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ABSTRACT
Interpretability refers to the model’s ability to explain the decision
to relate a exogenous variable to an endogenous variable. Current
approaches to interpretability utilize some conceptual structures
such as decision trees and clusters that may need to provide further
explanation to the end user who cannot intervene in making these
structures interpretable. In order to make a model interpretable, the
expert user should be involved in the design of an interpreter and
provide her/his expertise in terms of variables and relations thereof.
In this paper, we propose Structural Equation Modeling (SEM) as
an approach to defining models that are simpler and can provide an
interpretation of the learning models. A structural equation model
can organize latent and manifest variables as well as exogenous and
endogenous variables within a network of paths making possible
“causes and effects” explicit. In particular, we focussed on search
systems and on the interpretability of the reasons leading such a
system to retrieve and display a certain list of documents to the end
user. We provided some examples of structural equation models
that can be used to interpret search results.

CCS CONCEPTS
• Information systems→Retrievalmodels and ranking;Learn-
ing to rank; Query intent; • Computing methodologies→Ma-
chine learning.

KEYWORDS
Interpretability; Fairness; Explainability

ACM Reference Format:
Massimo Melucci. 2019. Can Structural Equation Models Interpret Search
Systems?. In Proceedings of SIGIR 2019 Workshop on ExplainAble Recommen-
dation and Search (EARS’19). ACM, New York, NY, USA, 8 pages.

1 INTRODUCTION
In Machine Learning, a model is designed to instruct a machine
to autonomously and effectively assign exogenous or independent
variables to endogenous or dependent variables. The assignment
of exogenous variables to endogenous variables must fulfil some
constraints andminimize a cost function. The learningmodel would
result very complex since the end user is not expected to understand
it.
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Recently, one important problem that has required the attention
of the designers of complex learning models is the difficulty in
understanding the reasons that caused a model to decide in favor
of a certain value of an endogenous variable on the basis of the
observed exogenous variables. The learning model can combine
many components to the extent that a human user can hardly
understand the reasons that lead the model to a certain decision.
The problem and the solutions thereof have become urgent since
the advent of “black-box” learning models that hide the reasons
underlying a decision from the end users and even from expert
users; the publication of regulations in the US and in the EU has
made the need even more urgent.

Interpretability refers to the model’s ability to explain the de-
cision to relate an exogenous variable to an endogenous variable.
We use “interpretability” according to the meaning provided by its
root, “interpret”, which is from the Latin inter, i.e. between, and
pretı̆um, i.e. price, and refers to an agent that explains and translates
the model’s language to the user’s language in order to reach an
agreement between the two parties in the same way a trade agent
aims to reach an agreement between seller and buyer. Therefore,
we consider interpretation in the sense that the model might not
at all be understandable and an interpreter is needed to make the
model understandable for the user.

Current approaches to interpretability utilize some conceptual
structures such as decision trees and clusters to provide some ex-
planations about a learning model in terms of decision rules and
membership assertions; for example, a decision tree can provide an
explanation in terms of “if-then-else” rules and leverage the use of
these rules in programming languages and to some extent in the
natural language in the hopes of making the decisions taken by a
learning model explicit and clearly understandable. One limitation
of the current approaches may be due to the need of providing
further explanation of the reasons that lead a tree, a classifier or a
regressor to decide about an assignment between variables, thus
only moving the problem from one model to another model. An-
other limitation may be caused by the poor expressivity of generic
patterns such as trees and clusters since they are often mined by
unsupervised algorithms without any interventions made by an
expert of the domain in which the data are interpreted and the
patterns are utilized.

Our approach to interpretability differs from the current ap-
proaches in that it is our opinion that the expert user should be
involved in the design of an interpreter and provide her/his exper-
tise in terms of variables and relations thereof. To the aim of pro-
viding an intelligible scheme that describes how a machine makes
decisions, we leverage a large field of linear models which by defi-
nition consists of numerical variables related by simple weighted
sums. In Statistics and in particular within Statistical Learning it
is customary to adopt models that act as interpreters between a
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natural, social or economic phenomenon and the human users of
the model who are interested in understanding the phenomenon.
Another reason that makes linear models attractive is the potential
to display the mathematical expressions in terms of expressive path
diagrams.

Our research interest is thus focussed on the utilization of highly
expressive statistical models as interpreters that are simpler the
learning models utilized within the “black-box” systems. In this pa-
per, we propose Structural EquationModeling (SEM) as an approach
to defining models that are simpler and can provide an interpreta-
tion of the learning models. A structural equation model is a linear
statistical model that is more general than traditional linear models
because it incorporates both latent and manifest variables within
complex and highly expressive path diagrams. By using SEM, the
expert user is involved in interpretation since s/he is requested
to provide a structural equation model which is then evaluated
against a dataset observed from a phenomenon in order to test the
appropriateness of the structural equation model’s explanation of
the phenomenon. Thus, two key elements of the utilization of SEM
to intepret learning models are (1) the direct participation of the
expert user and (2) the ability to hypothesize a structural equation
model that explain the decisions made by a machine.

In this paper, we focussed on search systems and on the inter-
pretability of the reasons leading such a system to retrieve and
display a certain list of documents to the end user. A search system
can be queried by the end user bymeans of natural language phrases
or more simply “bag of words”. The reasons that lead the system to
retrieve a certain list of documents might not be clear to the user.
A structural equation model may provide such an interpretation
since it can relate variables in a way that these relationships make
some “causes” of the main effect, i.e. ranking explicit. Therefore, the
structural equation model is a sort of interpreter which may show
how the interactions among variables can be an explanation of
search results. The structural equation model may also be useful for
the expert user such as a designer of the search system to analyze
the failures and the successes of the search system, thus finding the
way towards an improvement of the search system’s effectiveness.

2 RELATEDWORK
Interpretability was recently addressed in the survey of Guidotti et
al [10], in two introductory articles published in the Communica-
tions of the ACM [17], [21] and in a paper describing an approach
to Data Science [14]. The rise of interest in the topic was also fueled
by the European Union regulations on algorithmic decision-making
and on the “right to explanation” [9], especially in the light of the
emergence of deep neural network-based learning which made
automated learners “black-box” machines. We surveyed SEM in the
context of Information Retrieval (IR) system evaluation in [20]; in
this paper, our focus is on interpretability of search results when
the system internals (e.g. document index, term statistics) are un-
available.

Interpretability was addressed within some data mining and
machine learning tasks such as recommendation, classification,
prediction and topic modeling. Despite the variety of approaches,
our proposal differs from them since it suggests utilizing SEM.

Interpretability was investigated in the design of recommender
systems to address different research questions: how to provide ac-
curate recommendations while preserving interpretability [1], [16],
[28]; whether visual interface may help interpret recommendations
[7], [27]; which is the “best” matrix decomposition in terms of inter-
pretability [13]; and whether reviews can improve interpretability
of recommendations [26].

As regards classification some research proposals were made
to provide interpretable classifiers, for example an evolutionary
classifier based on a small set of interpretable “if-then-else” rules
[4], [29] and an algorithm that can faithfully explain a classifier or
a regressor [24].

Regarding prediction, some empirical studies that aimed to ob-
tain interpretable and accurate predictors were reported in [5]
whereas estimates of uncertainty regarding interpretable early pre-
diction were addressed in [8]. How well predefined patterns such
as decision tables and trees can interpret classifiers and predictors
was reported in [12] and [22].

Interpretability has also been an issue addressed in topic model-
ing since topics are usually modeled as vectors without any labels;
the assignment of a label to a topic is thus crucial in order to make
it interpretable [18], [23]. The problem with topic modeling is that
accuracy is sometimes unrelated to interpretability in the sense
that “models which achieve better predictive perplexity often have
less interpretable latent spaces” [6].

The use of graphical data structures to interpret the causal effects
in experimental or observational studies was addressed in [2] who
suggested a methodology based on the idea of cross-validation to
measure the differences in treatment effects across subpopulations.

A research work reported in [11] is somehow related to our
work since it proposed non-additive interactions within any set of
variables. The utilization of hidden factors to boost interpretability
was suggested in [30]. However, both papers do not suggest to use
SEM and for this reason our proposal differs from them.

3 STRUCTURAL EQUATION MODELING
In this section, we provide some basic terms and notions about
SEM; two compendia can be found in [3] and [15].

SEM refers to the complex of multivariate statistical methods
aiming to specify, estimate and fit a system of linear equations to a
dataset observed from a phenomenon. SEM consists of two main
conceptual pillars:

• the data observed from a phenomenon are encoded as vari-
ables, and
• the variables are inter-related by linear equations.

In particular, variables can be either exogenous or endogenous and
in parallel they can be either manifest or latent, thus yielding four
types of variable. An exogenous variable takes values from outside
the model, i.e. it cannot be determined by other variables of the
equations; in contrast, an endogenous variable can be determined
within the model. A manifest variable can directly be observed
whereas a latent variable cannot. For example, intelligence can
be an endogenous latent variable whereas the number of ques-
tions asked to measure text comprehensibility and the number of
mathematical problems solved to measure numerical skill can be
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exogenous manifest variables. Moreover, income can be an endoge-
nous manifest variable whereas attitude to entrepreneurship can
be an exogenous latent variable.

A structural equation model can be specified in general terms as
follows:

η = Bη + Γ ξ + ζ (1)

y = Λy η + ϵ

x = Λx ξ + δ

}
(2)

where Eq. 1 is called “latent model” and Eq. 2 is called “measurement
model”. In particular, η is a vector of endogenous latent variables,
ξ is a vector of exogenous latent variables, x is a vector of exoge-
nous manifest variables, and y is a vector of endogenous manifest
variables. B, Γ,Λy ,Λx are coefficient matrices, whereas ζ , ϵ, δ are
vectors of error uncorrelated with the variables. It can easily be seen
how to define a certain linear model by imposing some constraints
on the coefficient matrices. One of the simplest instances of a struc-
tural equation model is a linear regression model like y = a+bx +ϵ
where x,y are two variables, a,b are two real coefficients and ϵ
is the error. However, a structural equation model may comprise
many equations and variables of different kinds.

SEM has two main steps: estimation and specification. Estima-
tion, which is also known as identification, consists of computing
the entries of the coefficient matrices in order to reproduce the co-
variances between the manifest variables; therefore, them numbers
placed on the diagonal and in the upper triangle of the covariance
matrix are the sufficient statistics used to estimate the coefficients by
means of methods such as Maximum Likelihood Estimation (MLE).
The differences between actual correlation and estimated correla-
tions are called “residuals”. Specification consists of deciding on
the “shape” of the coefficient matrices, thus deciding how com-
plex the structural equation model is to estimate. Specification is
a crucial step because the number of coefficients determines the
identifiability of a structural equation model; a necessary condition
to make a structural equation model identifiable is that the number
of coefficients must not be greater thanm.

4 AN INTERPRETABILITY FRAMEWORK
In this section, we introduce an interpretability framework based
on SEM. We called the framework “Two Levels / Two Steps (2L2S)”
because it is based on the two main types of variables that can be
found in a structural equation model and on the two main steps of
SEM. In particular, on the one hand, “2L” refers to the utilization of
two types of variable: latent variables and manifest variables; it is
within 2L that we have both the latent model Eq. 1 and the mea-
surement model Eq. 2 of a structural equation model. SEM is quite
a complex methodology comprising a number of interrelated steps.
On the other hand, “2S” refers to the two steps of the structural
equation model employed in this interpretability framework: the
first step consists of specification, which aims to specify a struc-
tural equation model within 2L, whereas the second step consists of
estimation, which aims to evaluate the structural equation model.

The main idea underlying the 2L2S interpretability framework
is that a structural equation model is an interpreter providing an
explanation of the internal mechanics of a system that yields the
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Figure 1: A pictorial representation of the 2L2S interpretabil-
ity framework

data under observation. The 2L2S interpretability framework is thus
designed to provide the expert user with the methods which are
sufficient to define and validate the structural equation model used
as an interpreter. The 2L2S interpretability framework is depicted
in Figure 1.

At the conceptual level, latent variables and specification have
been placed. The conceptual level refers to the intellectual activity
performed by the expert user to define the latent variables that
can explain the manifest variables and thus provide a means for
interpreting what was observed altogether1.

At the conceptual level, the issues of validity and reliability ex-
ist. A manifest variable is a valid indicator of the concept which
the measured latent variable refers to when the manifest variable
measures what it is supposed to measure. For example, a query
term frequency is a valid indicator of relevance which aboutness
refers to when query term frequency measures the degree to which
a document is about the user’s information need. The support for
the utilization of query term frequency was developed by means
of a long series of experiments which, on the one hand, proved a
correlation between aboutness and frequency; on the other hand,
the link between aboutness and relevance was highly debated [25]
and it was more recently enriched by further dimensions of rele-
vance [19], which would suggest the existence of additional latent
variables such as user intent and document quality.

A manifest variable is a reliable indicator of the concept which
the measured latent variable refers to when the repeated observa-
tion consistently produces the same values of the manifest variable.
For example, a query term frequency can be considered as a reliable
indicator because the number of occurrences of the query term
in a document yields the same value whenever it is performed. In
contrast, the relevance assessment provided by a user in terms of
numerical score or ordinal labels cannot be considered as a reliable
indicator because the user may be subject to a number of both
exogenous and endogenous factors, which might induce the user
to change his/her own mind regarding the actual relevance of the
informative content of a document to her/his information need.

1“Conceptual” comes from the Latin word concept, meaning “conceived” which comes
from concipere, which in turn comes from com (“together”) and from capere (“take”).
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At the computational level, manifest variables and estimation
have been placed. The computational level refers to the compu-
tations performed by an automated system to fit the structural
equation model designed by the expert user at the conceptual level
to the manifest variables; at this level, there is no expert user’s
interventions. The expert user is expected to receive an outcome
from the estimation step in terms of error measures, fit indexes and
probability of significance upon which s/he can decide whether
her/his interpretation can be accepted with respect to the data.

The arrow between the latent variables and the manifest vari-
ables represents the relationship between the two main types of
variable which is defined within a structural equation model, that is,
the manifest variables result from the latent variables. The arrows
between specification and the variables mean that this step aims
to define a structural equation model and as a consequence select
the variables and the relationships between the variables which
may provide an interpretation to the observed data. The arrows
between the variables and estimation mean that this step tries to
fit the observed data to the structural equation model defined for
interpreting these data. The estimation step ends the process with
a binary outcome, i.e. either the observed data fits to the structural
equation model or it does not. In the former case, the structural
equation model may be viewed as an interpretation of the internal
mechanics of the system that generated the observed data.

Consider the general structural equation model defined in terms
of the latent model Eq. 1 and the measurement model Eq. 2. A
constraint on the coefficient matrix would allow the expert user
to design a different type of structural equation model and there-
fore represent a different hypothesis about the reasons that affect
search results. Suppose there are three latent variables referring to
relevance, user’s intent and document quality. The expert who is
trying to understand the reasons of the search results may want to
hypothesize that intent and quality are determining relevance. Un-
der this hypothesis, relevance is an endogenous variable whereas
intent and quality are exogenous variables since the intent can
only be formulated by the user and the quality can only be due to
the document’s author. In terms of Eq. 1, we have that η refers to
relevance whereas ξ1, ξ2 refer to intent and quality, and

η =
(
γ1 γ2

) (
ξ1
ξ2

)
+ ζ

where B = 0 since relevance cannot be self-related. However, if
another endogenous variable such as aboutness were hypothesized
by the structural equation model, one further relation could be
added to obtain the following model:(

η1
η2

)
=

(
0 b1,2

b2,1 0

) (
η1
η2

)
+

(
γ1,1 γ1,2
γ2,1 γ2,2

) (
ξ1
ξ2

)
+

(
ζ1
ζ2

)
whereη1,η2 refer to relevance and aboutness, respectively. As latent
variables are unobservable by definition, some manifest variables
are necessarily defined and linked to the latent variables. Suppose
a two-term query has been sent to the system by a user; the query
term frequencies can be computed for each retrieved document
to obtain two exogenous variables x1, x2. The rank y1 assigned to
each document by the system can be considered as an endogenous
variable which depends on query term frequency whereas the rel-
evance assessment y2 assigned to each document by the user can
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Figure 2: The path diagram of Eq. 3

be considered as another endogenous variable which depends on
relevance, intent and quality. As a consequence, the measurement
model of the structural equation model can become as follows:(

y1
y2

)
=

(
λy,1,1 λy,1,2
λy,2,1 λy,2,2

) (
η1
η2

)
+

(
ϵ1
ϵ2

)
(
x1
x2

)
=

(
λx ,1,1 λx ,1,2
λx ,2,1 λx ,2,2

) (
ξ1
ξ2

)
+

(
δ1
δ2

)
(3)

Interpretability can be ensured by the matrix coefficients, the value
and the sign thereof, as well as by the direction of the relation
between the variables due to the fact that the matrices may be
asymmetric. A matrix coefficient of row i and column j measures
the influence of variable j on variable i . When the coefficient c is
negative, for each unit shift in variable j an exact c shift in variable i
occurs. One strength of SEM is the possibility to depict a structural
equation model by using path diagrams; for example, the structural
equation model Eq. 3 is depicted as in Figure 2.

The specification of a structural equation model in the terms
required by 2L2S may be limited by the constraints due to the neces-
sity of selecting the variables and the relations thereof in advance.
In light of such a limitation, an analysis performed within the 2L2S
interpretability framework may be complemented by factor anal-
ysis where a simple structural equation model is constructed in
advance by only setting the number of latent variables while the re-
lationships with the manifest variables are automatically computed
in an unsupervised way. A model resulting from factor analysis
with r hidden factors and k manifest variables can be described as
follows:

ξ1 → x1 + · · · + xk · · · ξr → x1 + · · · + xk

where the arrows denote a “directed” relation between the variables.
The main limitation of factor analysis is that all the factors might
be linked to every manifest variable although the weights assigned
to the link between a factor and a manifest variable may result
almost zero. Therefore, a less rigid approach to finding a structural
equation model that explains the observed data may start with
factor analysis, which avoids specifying the model that relates
the latent to the manifest variables. Indeed, on the basis of the
outcome of a factor analysis, the expert may select some manifest
variables that are believed to be influenced by one latent variable
before adding further manifest variables or latent variables. As
an alternative, the expert may test the goodness of a structural
equation model and then adopt an exploratory analysis in order
to change the structural equation model and improve the fit. The
main advantage of factor analysis is thereby unsupervision since
the analysis computes some hidden factors without a predefined
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structural equation model. On the other hand, the factors suggested
by factor analysis might not indicate a structural equation model
which is effective in terms of goodness of fit; moreover, one factor
computed by factor analysis consists of vectors of real weights
measuring the degree of participation of each manifest variable in
the factor, thus not providing the expert user with a binary answer
to question as to whether to include the variable in a structural
equation model.

5 EXAMPLES
This paper focusses on search systems and, therefore, the interest
of our research was on the interpretability of search results. To the
aim of the interpretability of search results, some examples were
made as described in this section. The main aim of the examples de-
scribed in this section is to provide some ideas about how to utilize
structural equation models to interpret search results in practice. In
order to explain the pratical utilization of structural equation mod-
els, a search scenario was chosen; in particular, in this section we
considered the interaction between the user and the Search Engine
Search Pages (SERPs), which can be obtained by means of a search
engine that answers the user’s queries. The examples reported in
this section cannot be considered as an exhaustive evaluation as
this is a task which will be addressed in the future work.

The search scenario that was chosen for the aims of this paper
consists of, on the one hand, the index of a document collection and,
on the other hand, a user who sends queries to the search system.
The search system accesses the index and returns the SERP as a
response to a certain query. A scenario is imagined where the user
receives the SERP and tries to understand the reasons that made the
system send the SERP. The user may want to assess the relevance
of the returned documents; however, relevance assessments are
relatively little of importance in these examples because the main
aim of the examples was to ease the interpretability of search results
rather than the effectiveness of the search system. It is important to
recall that the user is assumed to be an expert who can formulate
SEMs.

The index that was utilized in the examples reported in this
paper was created from the GOV2 document corpus consisting of
about 25 million documents. The full text of each document was
indexed without special filters or schemas aiming to emphasize the
importance of some document fields. The Text Retrieval Conference
(TREC) 13, 14 and 15 topic sets were utilized as sources of queries;
however, we could only refer to very few example queries, which
were generated from the topic title fields. Stopwords were removed
and no stemming was performed. As for SEM, we used the lavaan
R library (lavaan 0.6-3 with MLE).

Consider an input query. The search system will retrieve and
rank at most, say, n = 300 documents, where n is the sample size.
Suppose the search system can display the most important snippets
for each retrieved document to the user who may as a consequence
be able to extract some features from each document by using an
automated feature extraction tool. In the examples of this section,
we considered the following document features: rank, document

length2, frequency of each query term within the document, aver-
age distance between two query term occurrences, and number of
documents including two query terms. As fittingmay be sensitive to
large variances, a logarithmwas applied to both rank and document
length in order to reduce their variances; note that logarithm is a
monotonic function which keeps order and therefore does not in-
fluence the association measures, thus making this transformation
a common practice in statistics. The following structural equation
model was then defined:

rank← x1 + · · · + xk (4)

where xi is the frequency of the i-th query term; the structural
equation model Eq. 4 is basically a linear regression model. Suppose
the user entered the query generated from topic number 701 (k = 4).
Fitting the data with structural equation model Eq. 5 provides un-
satisfactory results because R2 is low and the regression coefficients
are statistically not significant.

As our interest is in the latent model, the following structural
equation model is instead utilized:

ξ1 → x1 + · · · + xk ξ1 → rank (5)

where ξ1 is a latent variable who is supposed to be the common
source of anymanifest variable.We considered themodel chi-square
with its degrees of freedom and p-value; the Root Mean Squared
Error (RMSE) and its 90% confidence interval; the Standardized Root
Mean Square Residual (SRMR); and the correlation residuals. The
analysis of the unexplained residuals of the correlations between
the manifest variables indicated that the tested structural equation
model under-predicts the correlation between x1 and x2; in this
case, the hypothesis of no direct effect between x1 and x2 may
be revised. As a consequence, we tested the following structural
equation model:

ξ1 → x1 + x2 + x3 + x4 x2 ↔ x3 x1 ↔ x3 (6)
x3 ↔ x4 ξ1 → rank

The resulting residuals and, as a consequence, SRMR, all were al-
most zero. Moreover, the chi-square statistic values were less than
their expected values and its p-value was about 0.19 although the
sample was quite large3, thus signalling that rejecting the hypothe-
sis of good fit is a rather costly decision. Indeed, it should be noted
that within SEM the researcher wants to not reject the null hy-
pothesis of fit while within a traditional experimental setting the
researcher aims to reject the null hypothesis of equality between
two treatments with low probability of error. The RMSE calculated
for Eq. 6 was 0.0 and its 90% confidence interval was [0.00 − 0.07].
Therefore, the chi-square statistic of this structural equation model
will not reject the good fit hypothesis. Moreover, the p-value of
the hypothesis that RMSE is not greater than 0.05 was 0.34, thus
confirming that the hypothesis of good fit should not be rejected.
Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI) were
1.0 and 0.96, respectively. These indexes aim to measure the de-
parture from the baseline structural equation model; they assume
covariances of zero between the endogenous variables which is a

2The document length may be calculated after downloading the page from the given
URL.
3In hypothesis testing, the larger the sample is, the more frequently the null hypothesis
is rejected.
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rather unrealistic assumption. However, their utilization may fur-
ther support the other evidence in favor of non-rejection of the null
hypothesis.

The coefficients between ξ1 and the manifest variables suggested
that the former was positively correlated with rank and x4 and was
negatively correlated with x3, thus suggesting the role of x3 in
promoting the documents to the top ranks and the role of x4 in
demoting the documents from the top ranks, as confirmed by the
negative correlation between x3 and x4.

In general, a structural equation model might not fit all samples.
For example, the data observed from the result document returned
to the query of topic 707 could not be explained by Eq. 6 and another
structural equation model was defined after analyzing the residuals;
specifically, we considered

ξ1 → x1 + x2 + x3 + x4 x1 ↔ x2 x2 ↔ x3 (7)
ξ1 → rank rank↔ x2 rank↔ x3

which exhibited a very good fit since all the residuals and SRMR
were zero up to the third decimal digit. Moreover, the chi-square
statistic values were much less than their expected value and its p-
value was about 0.9 although the sample was quite large. Moreover,
the RMSE calculated for Eq. 7 was 0.0 and its 90% confidence inter-
val was [0.00 − 0.08]. The p-value of the hypothesis that RMSE is
not greater than 0.05 was 0.92, thus confirming that the hypothesis
of good fit should not be rejected. Both CFI and TLI were 1.0.

The event of query 708was another example where the structural
equationmodel fitting the data returnedwas inadequate. In this case,
the solver could not find any solution for the structural equation
models Eq. 5 and Eq. 7 and an incremental approach to finding the
appropriate structural equation model was defined. Therefore, we
considered

ξ1 → x1 + x2 + x3 ξ1 → rank (8)
and found that x1 ↔ x3 should be added, thus significantly improv-
ing the fit. As above, the chi-square statistic, its p-value and the
evidence provided by RMSE and SRMR confirmed the decision not
to reject the hypothesis of good fit. Nevertheless, the regression
coefficients between the variables cast doubt on the reliability of the
structural equation model. Indeed, for each unit shift of x1, there
would be a −3.5 shift of x2, a −8.2 shift of x3, and 9.5 shift of rank,
thus suggesting that the improvement of the rank of a document
was promoted by x2 and x3. However, these coefficients were not
statistically significant since their p-values were relatively large,
thus making a wide range of alternative coefficient values possible;
for example, the probability that the coefficient between ξ1 and
rank can be greater than 9.5 or less than 9.5 is about 40%.

As another example, consider topic 708. The following structural
equation model could well fit the top 100, 300 and 500 ranked
documents since the p-value of the chi-square test statistic was
about 0.34, the p-value of the hypothesis that RMSE was less than
0.05 was 0.43 and the SRMR was almost zero:

ξ1 → rank + x1 + x3 + x4 x1 ↔ x4

The coefficient of the model suggested that x3 was the most impor-
tant factor in determining rank where the other query terms were
little significant and also inversely correlated as if they were oc-
curring in different subsets of retrieved documents. We performed
the same analysis yet only the relevant retrieved documents were

added to the sample; the analysis was then repeated with only
the non-relevant documents. We found that the aforementioned
structural equation model exhibited a good fit with the relevant
documents, but it did not with the non-relevant documents. This
example suggests that the best structural equation model may be
detected with no knowledge about the relevant documents, i.e. with-
out prior knowledge other than the knowledge used to specify the
model.

We also considered a very short query. Topic 731 consists of two
terms. The following structural equation model could well fit the
top 500 retrieved documents:

ξ1 → rank + x1 + x2 ξ2 → d1,2 x1 ↔ d1,2

The regression coefficient between rank and x1 is about 1.3, i.e. the
rank will increase by 1 unit for each 1.3 variation of x1. Similarly
the regression coefficient between rank and x2 is about 30.3, i.e.
the rank will increase by 1 unit for each 30 variation of x2. These
coefficients suggest that (1) the variation of rank for each unit shift
of x2 is much slower than the variation for each unit shift of x1 and
(2) both query terms demote documents and the documents that
include few occurrences of the query terms are ranked above the
documents that include many occurrences.

Further structural equation models can be defined to investigate
the relationships among manifest variables and latent variables; for
example, one may want to investigate whether the latent variables
referring to the user’s assessment of relevance and the system’s
assessment of relevance are inter-related and connected to the latent
variables referring to document and query content. One model that
can represent these connections may be expressed as follows:

ξ1 → η1 + η2 ξ2 → η1 + η2 η1 ↔ η2

ξ1 → x1 + · · · + xk ξ2 → c1,2 + · · · + ck−1,k

η1 → rank η2 → qrel (9)

where η1 and η2 refer to the user’s assessment of relevance and the
system’s assessment of relevance, respectively. This example shows
that the specification and the estimation of a structural equation
model can be a difficult task because themodelmight be identified or
estimated due to a number of methodological issues, which should
be addressed when an interpretation of search results is made by
using structural equation models. These issues are discussed in the
next section.

6 DISCUSSION
The 2L2S framework for interpretability is based on two main steps
(i.e. specification and estimation or identification) and two types of
variable (i.e. manifest and latent) which may be either exogenous
or endogenous. Therefore, the framework has the strengths and
the weaknesses which are typical of SEM. These strengths and
weaknesses are thus crucial to the exploitation of the framework
for defining structural equation models in the role of interpreters.

The power of the use of SEM in interpretability is the tight con-
nection with the task of the system that produced the results under
scrutiny. Indeed, differently from general patterns such as decision
trees, which are automatically discovered, a structural equation
model is specific to the type of system – a structural equation
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model designed for one query will likely be inappropriate for an-
other query. It is this peculiarity of SEM that makes specification a
crucial step in an approach to interpretability based on SEM. As a
consequence, the particular domain (e.g. IR) in which interpretabil-
ity is investigated should be carefully considered before suggesting
a structural equation model as an interpreter of a search result. In
other words, the expert user should invest her/his expertise in the
domain when defining structural equation models.

As stated above, the use of latent variables makes SEM differ-
ent from other statistical methods such as regression, which only
employs manifest variables. The use of latent variables have good
potential which may turn into a problem if they are used without
giving them an appropriate meaning. Indeed, the manifest variables
can exhibit a clear meaning since they correspond to real concepts;
for example, the values of term frequency is a clear measure of the
occurrence of a term. In contrast, a latent variable such as relevance
can become ambiguous and as a consequence useless if its meaning
cannot be made clear and explicit; in the aforementioned situation,
relevance should be specified according to the particular search task
and should, for example, be redefined if the task refers to homepage
finding or patent search to name just a few contexts of search. Be-
sides, the redefinition of a latent variable such as relevance would
help the expert user to link the variable to the most appropriate
manifest variables.

Directionality refers to the distinction between exogenous vari-
ables and endogenous variables and to the different roles played by
them – an exogenous variable directly or indirectly determines an
endogenous variable and the viceversa cannot hold. For example,
the system’s assessment of relevance, which may be indicated by
document rank, can determine the user’s assessment of relevance,
which may be indicated by a binary variable; the viceversa cannot
hold. In other cases, the distinction might be less clear; for example,
the latent variable indicated by term frequency may determine the
latent variable indicated by the distance between term occurrences,
but the viceversa can also hold.

Regarding the examples in Section 5, the specification of the
best structural equation model was perhaps the most difficult step.
Two reasons that made specification difficult are (i) the necessity
that a structural equation model is identifiable and (ii) the tendency
to add more latent variables than what can be “tolerated” by the
available observations. Fortunately, identification can be checked
by some conditions. We already mentioned the necessary condition,
that is, the number of variances and covariances of the manifest
variables (i.e. observations) must be greater than the number of
“arcs incidents on” the variables (i.e. parameters). The so-called rank
condition4 is also sufficient, thus providing the expert with an easy-
to-check condition that can be implemented by a straightforward
algorithm before estimating the model [15].

Obtaining samples is relatively easy when interpreting search
results since a search system can in general be queried to obtain
any number of retrieved documents. The ease of obtaining samples
is a significant advantage of the 2L2S interpretability framework.
However, some attention should be paid to the selection of the

4The rank condition (1) requires that the matrix of the graph connecting all the
variables to the endogenous variables be reduced according to a given algorithm and
(2) states that the rank of the reduced matrix must be greater than or equal to the
number of endogenous variables minus 1.

sample units in the event of a list of retrieved documents since
the sample will not be random, i.e. sampling cannot be repeated
to obtain a representative of the document collection since the top
ranked documents will always be retrieved. Furthermore, the list
of retrieved documents should not be a random sample because the
aim of 2L2S is to improve the interpretability of the search results
and, in particular, the top ranked documents which will be delivered
to the end user. From a methodological point of view, the lack of
randomness and repeatability of sampling demonstrates the need
for another concept of sampling, and the need to consider a list of
retrieved documents as an exemplar of the universe of retrieved doc-
ument lists that can be retrieved by the search systems answering a
certain query yet within different contexts. As a consequence, the
number of retrieved documents may be a parameter of a structural
equation model in the sense that there might be different models
for different retrieved document list sizes.

It is worth mentioning one word regarding feature extraction.
From the examples in Section 5, it seems that a structural equation
model can only handle ranking models that are built with manually
crafted features, while the state-of-the-art search systems often use
embedding features learned with neural networks. In principle, it
would be very promising if we could develop an explanation model
that can handle these latent features. However, it is the “black-box”
nature of neural networks that makes structural equation models
a useful approach to interpreting search results and makes the
extraction of features from these results necessary and the only
viable source of evidence.

A structural equation model appears to be only a linear equation
system. However, in theory, it is possible to extend SEM to non-
linear models [3], but the question is whether the interpretability of
the search systems can still be provided. In the relevant literature,
the degree of interpretability contrasts with model complexity and
it is believed that linear models are the best instruments in light of
interpretability; one reason is that a linear equation can be accom-
panied by sentences like “one unit shift of x determines one unit
shift of y” whereas non-linear models would require “non-linear”
sentences.

As for the evaluation of the use of structural equation models
to the aims of interpretability, further research is necessary to pro-
vide evaluation frameworks, metrics, search scenarios, and public
datasets. Absolute fit indices or incremental fit indices are only
a measure of fit of a structural equation model, but they little in-
formation about the user’s overall satisfaction, the availability of
user experts, the ability to scale up the model without requiring
considerable human effort and how to interpret the model when
the model gets complicated with more complex variables.

7 CONCLUSIONS
We reported on a preliminary investigation aiming to answer the
following research question: “Can structural equation models inter-
pret search results?”. Scientific research requires a critical attitude
especially when the answer to a research question is complex and
cannot be reduced to a binary outcome. In this section we will make
an effort to report all the major issues that deserve further research.

The utilization of SEM for interpretability purposes might seem
like an oxymoron. On the one hand, the specification of a structural
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equation model requires some knowledge about the mechanics of a
search system or at least about the relationships between the man-
ifest variables. On the other hand, the structural equation model
should serve as an interpreter and provide knowledge about the
aforementioned mechanics. Nevertheless, the apparent contradic-
tion can be overcome because the structural equation model can,
at least initially, be quite simple and can be further made complex
according to the residuals; moreover, factor analysis can suggest
possible latent variables, calculate the loadings between latent vari-
ables and manifest variables, and support the expert to find the
right structural equation model.

Any structural equation model requires some interpretation and
a great deal of attention should be paid to statistical significance of
fitting. Indeed, when a structural equation model has a good fit with
the observed data, the p-value will be large enough to let the expert
state that the model should not be rejected. However, the good fit
does not imply that the model is the sole interpretation of the search
results; there might be other structural equation models exhibiting
a comparable fit. To select the “right” model, power analysis5 should
be performed to compare different models. The presence of multiple
structural equation models may make interpretability more difficult
than in the event of one structural equation model; however, the
degree to which these structural equation models overlap is still
unclear and may, on the contrary, be a strength in that they may
provide additional information to the interpretation as they provide
different angles on the same subject.

The search for the structural equation model that can interpret
search results requires the expert user’s intellectual activity because
of the presence of latent variables and the need to specify the rela-
tions between the variables – it is our opinion that the role played
by the expert user is necessary. However, such an activity cannot be
the only one since it may turn out to be tedious and prone to error,
especially when the structural equation model is complex and there
are many queries whose search results necessitate an interpretation.
In this case, an algorithm that make the entire process automatic or
at least requiring minimal interaction would be very useful. Future
research will address the quest for such an algorithm that can go
beyond the current software tools, which are primarily used to
perform calculations such as estimations and optimizations.

In summary, this paper presents a preliminary study of the uti-
lization of SEM to the purposes of interpretability of search systems.
Further research is required to address some methodological issues.
Despite being preliminary, structural equation models may pro-
vide an effective way to approach interpretability thanks to their
intrinsic expressibility as shown in other research fields such as
Economics and Psychology.
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