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ABSTRACT

Due to the difficulty of understanding and deciphering the content
of text embeddings, the embeddings are often used as features as a
whole for classification. In this paper, we show this is not always
desirable for tasks like query classification and propose a method
for identifying a subspace — a list of vector elements — of query
embeddings, which strongly corresponds to a particular class. We
hypothesize that an individual or a group of embedding elements
can serve as useful conceptual features. Also proposed is a method
for interpreting a subspace as a list of words that characterizes the
subspace. To make subspaces more conceptually distinct, we test our
approach with high dimensional sparse representations of query
embeddings, which can be generated by applying a sparse coding
method to ordinary dense embeddings. Our proposed method is
expected to help understanding how classification models process
embeddings and subsequently provide guidance to make classifiers
more accurate and efficient.
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1 INTRODUCTION

It is common practice to use word or text embeddings as input for
classification tasks (e.g. sentiment analysis [30], document classifi-
cation [52]), since embeddings are useful for capturing the meaning
of a word and text. Unfortunately, it is also common to blindly use
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the whole embeddings as input to classifiers although some part
of embeddings may not be useful for a given task. It is because the
content of embeddings is hard to interpret, making it challenging
to select which part of embeddings to use.

In this paper, we propose a method of identifying and interpret-
ing a subspace — a list of vector elements (i.e., dimensions) — of
query embeddings that play a critical role in query classification.
We will use the terms ‘elements’ and ‘dimensions’ interchangeably.
Query classification is a problem of assigning a query one or more
predefined classes based on the query’s topic or intention. For in-
stance, for a query “birthday gift”, a classifier needs to infer that it
intends to buy a gift, and classify it to the Shopping category.

Previous studies showed that an embedding’s elements loosely
represent distinct ‘concepts.’ For instance, the authors of [33] pro-
posed a model to bridge the gap between distributional semantics
(vector space) and conceptual space. The model dynamically selects
specific dimensions associated with seed terms, which form a sub-
space of terms defining the related concept. Inspired by this, we
hypothesize that embedding dimensions, individually or as a group,
can serve as unique and meaningful conceptual features for classi-
fication tasks. We expect heterogeneous query classes (e.g. News
vs. Shopping) would have distinct subspaces that characterize each
of them. Identifying such subspaces would provide more in-depth
insight on how the underlying classification model understands
and processes embeddings.

We argue that identifying class-specific subspaces is essential
to classify queries accurately. Because a user’s intention is not
explicitly stated in a query which usually comprises a few keywords,
it would be critical to identify a subspace for common concepts
or features that represent the queries belonging to the same class.
For instance, even if two queries are not so close in their semantic
as commonly reflected in the embeddings, they are expected to
be classified into the same class when they share the same intent.
For instance, the queries “parent’s day gift” and “bleach” should be
classified as Shopping class. If embeddings are used as features as
a whole, it would be challenging for a classifier to select a small
set of intent-oriented elements and decide both queries belong to
Shopping. While the Attention techniques [5] can address this issue,
our method of not only identifying but also interpreting subspaces
have an added advantage of making the classification process more
explicit and explainable; more details be explained in later sections.

To select and describe subspaces, we first encode queries into
embeddings by using a DisC model [2], which is a simple and fast
Bag-of-n-gram embedding model that generates text embeddings by
combining embeddings of n-grams. We then train a classifier that
takes query embeddings as input, treating embedding elements as
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features. We use Gradient Boosting Tree as the classification model.
Next, we use a SHAP (SHapley Additive exPlanation) model [29] to
identify the subspace that is strongly connected to a specific query
class. Finally, we automatically provide a verbal description of the
identified subspace for human interpretation.

To generate more precise and conceptually consistent interpre-
tation result, we test our method with high-dimensional sparse
representations of queries, motivated by earlier works that dis-
covered ordinary dense embeddings can be decomposed to have
more conceptually coherent dimensions by applying sparse coding
methods [3, 37, 51]. Compared to lower dimensional dense em-
beddings, sparse embeddings have the following advantages: 1)
They can express a wider range of conceptual features gathered
from a text corpus, and 2) Each word is described by a small num-
ber of significant features [37], which coincides with the findings
from feature-norming experiment that showed only 10-20 charac-
teristics are usually enough to describe a given concrete concept
[22]. We expect these properties of sparse representations can help
generate more accurate and fine-grained subspace selection and
interpretation results, which we will show through our experiment.

Although our application in this paper is query classification,
our method can be applied to other kinds of classification tasks that
take embeddings as features, provided that there is an applicable
feature attribution method for the classifier being used.

The main contributions of this paper can be summarized as
follow:

e We show that using ordinary word embeddings as a whole
for a query classification task is problematic, i.e. not suffi-
ciently effective.

e We present our method of identifying, selecting, and in-
terpreting embedding subspaces that are important for im-
proved and transparent query classification..

e We show that by using our method with sparse query em-
beddings we obtain clearer interpretation of important sub-
spaces.

2 RELATED WORK

Query Classification. Query classification has been studied
quite extensively [10]. With KDDCUP 2005 competition that sparked
interests on this research, various methods are proposed ranging
from click-through data [7, 53] to deep neural network models
[26]. Also, many different taxonomies for query classification have
been introduced from the perspective of topics or user intents (e.g.
[6, 11]).

Word Embeddings and Bag of n-grams Embeddings. Word
embedding models [9, 41] are one of mainstream research topics in
neural network based text processing and became an indispensable
tool for NLP tasks after the seminal paper published by Mikolov
[34], which is based on the idea proposed in [8]. The basic idea
is to optimize the embeddings of words to be similar if the words
share similar contexts. The idea borrows the theoretical basis from
distributional semantics: “a word is characterized by the company
it keeps.” [23].

The bag of n-grams model, specifically Distributed Co-occurrence
(DisC) model [2, 52] encodes text as linear combination of n-gram
embeddings. Although the model doesn’t encode the full sequence
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information of text as the LSTM does, it does consider the order
of words to some degree by considering n-grams. This approach
turned out to be a fast and effective method for various classification
tasks [2].

Model Interpretability. Interpretability can be defined as “the
degree to which a human can understand the cause of a decision”
[35]. Making machine learning models interpretable help under-
stand why the models succeed or fail and could give us better
intuition about the problem and higher trust in the solution. More
fundamental need for the interpretability stems from an incomplete-
ness in the problem formalization [19].

The easiest way to attain interpretability is to use the simple
models (e.g. linear regression) that are inherently interpretable,
thanks to their simple structure (e.g. linear regression, decision
tree), at the cost of performance on complex problems. For a model
with many abstraction layers (e.g. deep neural networks, ensemble
models), a possible way to interpret the result is to train an inter-
pretable model that can approximate the prediction of the model
(i.e. surrogate models). LIME [44] and SHAP [29] models are re-
cent developments of such local surrogate models. It is called local
because it aims to explain individual predictions, not the global
behavior of the target model. Especially, “SHAP connects game
theory with local explanations, uniting several previous methods
[4, 13, 16, 27, 44, 47, 48] and representing the only possible consis-
tent and locally accurate additive feature attribution methods based
on expectations” [29].

Sparse Embeddings. Sparse representations are a class of rep-
resentations motivated from the highly sparse representations ob-
served in a human brain [24, 40]. Under the sparse representations
each sample is characterized by only a few important features
out of a large number of available features (i.e. sparse and high-
dimensional), making the samples robust to noise and interference
from random input [1].

Applying sparse representations on word and text embeddings
is not a new idea. Largely there are two ways to make the word
embeddings sparse: post-processing pre-trained dense embeddings
using techniques such as sparse coding [20, 37], or directly learning
the sparse representation of words by imposing sparsity constraints
to the learning objective [15, 50]. The benefits of high dimensional
sparse embeddings are that each dimension is conceptually more
coherent relative to that of dense embeddings and that only a few
representative concepts of each word are preserved. We expect
these properties of sparse embeddings will help generate a more
accurate and precise interpretation of model prediction.

3 TASK
3.1 Goal

Our goal is to classify the Korean queries to query ‘collections’ (e.g.
News, Shopping) defined by Naver!, the Korean web search engine
run by NHN corporation. In Naver search engine, the indexed doc-
uments are categorized into 48 collections (e.g. Image, Blog). Our
task is to predict a collection relevant to a given query’s intention.
For instance, if a user submits the query “spring pretty wallpaper”,
the system should predict the query’s collection as Image, search

!https://naver.com
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for the relevant resources from Image collection, then finally return
the result with grid view of images, which is an optimized view
for Image collection. Since the relevancy of a predicted query’s
collection will greatly affect the user experience, classifying query
collections accurately is an important task.

3.2 Problem and Challenge

In Naver, the query classification is performed based on click-
through data. The problem of this approach is that it cannot handle
new, unseen queries that have no historical data. It’s similar to ‘cold
start’ problem in recommender systems. Since up to 80% of daily
queries is “unseen”, they become a severe obstacle to the query
classification system (e.g. Nvidia GTX1080ti — Review, Nvidia
RTX2080 — ?).

The embedding-based approach can be a promising direction
to tackle the problem, especially compared to the keyword-based
approach, which is susceptible to unseen keywords. By sharing the
click-through histories between semantically similar queries, we
could compensate for the missing histories of unseen queries (e.g.
RTX2080 ~ GTX1080ti, Nvidia RTX2080 — Review).

But even with embeddings, finding class-specific characteristics
between queries is not an easy task. It is because queries are short,
suggestive, and diverse with abundant variations such as model
numbers. For instance, there may be cases when the semantic match
between two queries is low but should be classified as the same
collection (e.g. “Gang-nam delicious restaurants”, “Sony RX0m2”
— Review). There may be other cases when the semantic match
between two queries is high but should be classified as different
collections (e.g. “Jeju island flight” — Trip, “Jeju island flight crash”
— News). The point to stress is that using embeddings as a whole
is not always effective for classifying this type of queries.

Instead, we need a method to identify the subspace (a list of
embedding elements) of query embeddings that signifies each col-
lection, which would help the classification achieve higher accu-
racy (Figure 1). This approach is plausible because there is evidence
that the elements of textual embeddings represent specific senses
or concepts that compose text while exhibiting a range of speci-
ficity depending on whether the embeddings are dense or sparse
[21, 33, 37, 50, 51].

We argue that with the knowledge of important subspaces, we
can predict a query’s collection more accurately and efficiently, sim-
ilar to the benefits we can get by performing feature selection. Also,
with the help of subspace interpretation technique proposed in this
paper, we can elucidate how the classification model understands
and utilizes the elements of embeddings, enabling us to perform in-
terpretable model debugging process. It is why we are proposing a
method of selecting and interpreting important subspace for query
classification, which we will explain in Section 4 and 4.4.

4 METHOD
4.1 Query Embedding Generation

To convert queries to embeddings we used Distributed Co-occurrence
(DisC) [2] model. DisC model is a sentence embedding model in-
spired by a Bag of n-gram (BonG) representation of a document,
each element of which represents all possible n-grams collected
from the texts being represented. The DisC model considers the
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“high-res wallpaper”

Figure 1: Classifying the query “high-res wallpaper” by in-
specting the strength of a subspace that is connected to
Image collection. Identifying the important embedding sub-
space for query classification can be helpful to make the
classification more accurate

order of words to some degree by modeling n-grams and is reported
to be a strong baseline for a variety of text classification tasks [2].
LSTM-based models (e.g. [25, 42]) or Transformer-based models
(e.g. [18, 43]) are currently more popular and powerful options for
modeling short and long texts. But we decided to use DisC model
because of the following reasons:

e Complexity: A search query usually comprises few words,
but the exact word order of the entire query is not always
critical. Applying the models like BERT [18] which consider
complex relationships between tokens and sentences is likely
to be an overkill.

¢ Efficiency: The DisC model requires just linear operations
of pre-trained word embeddings. It is more suitable to be
applied to systems which require high throughput and re-
sponsiveness, such as search engines.

o Ease of Interpretability: Due to the model’s simple archi-
tecture, the representations generated by the DisC model
are easier to interpret. The interpretation method will be
explained in Section 4.4.

DisC embeddings are generated by concatenating the sum of
n-gram embeddings gathered from a target text (Definition 4.1 and
4.2).

Definition 4.1 (Compositional n-gram embedding). Represent n-
gram g = (wy,...,wp) as the element-wise product v5 = vy, ©
-+ -O0yy,, of the embeddings of its constituent words. Note that DisC
embeddings require pre-trained word embeddings (e.g. fastText
[9]) to generate n-gram embeddings.

Definition 4.2 (DisC embedding). The DisC embedding of a piece
of text is a concatenation for (vy, vy, . .., v,) where v, is the sum
of the n-gram embeddings of all n-grams in the document (for n = 1
this is just the sum of word embeddings).

The number of dimensions of the resulting embeddings is de-
termined by choice of n. For instance, if we decide to use up to
2-grams with 300-dimensional word embeddings, the number of
dimensions will be 600, in which 1-300th dimensions for the sum
of 1-gram embeddings and 301-600th dimensions for the sum of 2-
grams embeddings. Figure 2 shows an example of the composition
process of DisC embeddings.

4.2 Query Classifier

We use a Gradient Boosting algorithm for the classification task,
where a classification model is developed by stacking weak predic-
tors (e.g. shallow decision trees) sequentially. More specifically we
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Electricity Bill Calculator

\ 4

Velectricity T Vbill + Vcalculator Velectricity * Vbill t Vbill * Vealculator
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SUM(1-gram)

SUM(2-grams)

Figure 2: This figure shows an example of how a query em-
bedding is constructed using the DisC model. When up to
2-grams are used, the resulting embedding becomes 600 di-
mensional, which is twice as big as the original word embed-
dings. Note that 2-gram embeddings are constructed with an
element-wise product of the constituent word embeddings.

use xgboost which is an optimized distributed gradient boosting
library [14]. Gradient Boosting is known to be especially powerful
for classification tasks. We opt for Gradient Boosting because of its
high performance, as it is essential to start with a highly accurate
classification model to select and interpret subspaces that dictate
the classification result.

4.3 Subspace Selection

Selecting a subspace is the same as identifying a list of embedding
elements that play an essential role in deciding the class. We can
utilize feature attribution methods for this. Among many feature
attribution methods, we choose the SHAP (SHapley Additive ex-
Planations) model [29], because it is the only possible consistent
and locally accurate feature attribution method known to us.

The SHAP model is unique in that it is a unified method to
interpret prediction models (i.e. query classification model in our
case) by merging a variety of interpretation methods that belong
to additive feature attribution class, including [17, 27, 44, 49]. It
implements a single unique solution in this kind of interpretation
models that satisfies three desirable properties of explanation model:
local accuracy, missingness, and consistency, all of which can be
achieved by calculating Shapely values [27] for each feature w.r.t.
the model’s prediction.

A Shapely value computes an importance score of a feature by
measuring the effect on the model’s prediction when that feature
is included (Equation 1).

ISI'(IF| - IS] - D!

91 = 71!

SCF\{i}

Where F is the set of all the features, S C F all feature subsets,
fsu{iy @ model trained with the feature i included, and fs a model
trained without the feature. With fsy(;}(xsu(i}) — fs(xs) we com-
pare the output of the two models on the current input to see the
contribution of the feature. The computation is done over all the
query embeddings belonging to a particular class so that we can
identify the salient elements of the embeddings.

[fsugiy(xsugiy) — fs(xs)] (1)

4.4 Subspace Interpretation

To interpret a subspace, we try to provide visual clues of the se-
mantics of subspace using examples (currently words). The idea
is to search for the words that have high values in the elements
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that belong to a subspace. It’s a common technique utilized in the
feature visualization field, which is reviewed in [12, 39]. Unlike
LSTM-based sentence embedding models that produce a composite
embedding, the query embeddings generated by DisC make it easy
to discern the critical embedding elements associated with the con-
stituent words and word sequences of varying lengths. Naturally, a
list of top k words representing an element can be seen as tied to
k-grams rather than the entire query or a sentence.

The method of interpreting a single embedding dimension by
searching the nearest k words is already presented in previous stud-
ies [3, 20, 37]. Our approach is slightly different in that we average
the values of all the dimensions that constitute target subspace
(Equation 2). It is because we want to provide an interpretation of a
subspace, not a single dimension. We found that this simple method
is effective for understanding the semantics of a subspace and that
the interpretation matches the human intuition. The subspace score
of a candidate word is computed as follows:

2iesdi @)

N

where S is the dimension indices of the target subspace, |S| is the
size of S, and d; represents the value of i-th dimension of a word w.

The list of words that have high subspace score can be consid-
ered as the interpretation of that subspace. The same word will
have multiple subspace scores because the subspace for different
query class usually comprised a different set of embedding elements.
Figure 3 shows a query embedding with the subspace for the class
SHOPPING circled and the interpretation for the subspace written
on the right.

SubspaceScore(w) =

backpack
Wallmart

T e

nike

Shopping

Figure 3: An example of subspace interpretation for
Shopping

4.5 Comparison between Sparse vs. Dense
Embeddings

We test our methods with two types of embeddings — dense em-
beddings and sparse embeddings. Dense embeddings refer to those
derived from the well-known methods like word2vec or fastText.
Those are usually low-dimensional vectors (e.g. 300), and most of
the dimensions are filled with non-zero values. In contrast, sparse
embeddings are high-dimensional (e.g. 2,000) vectors, and most of
the dimensions are zeros.

We expect sparse embeddings to be suitable for selecting and
interpreting subspaces more precisely because of the following
properties:

(1) Sparse: Each sample is represented using only a few impor-

tant dimensions.
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(2) High-dimensional: The dimensions represent more spe-
cific concepts.

This means sparse embeddings may contain less noise and have
more conceptually consistent (i.e. less ambiguous) dimensions,
which are desirable properties for our task. For a more detailed
explanation and analysis of sparse representations, please refer to
[1,37].

To generate sparse query embeddings, we first decompose dense
word embeddings into sparse word embeddings using Winner-Take-
All autoencoder [32], then take the same steps described in Section
4 and 4.4. Winner-Take-All autoencoder is a slight modification of
k-sparse autoencoder [31], which is the autoencoder that preserves
only k largest activations of a hidden layer.

k-Sparse Autoencoders [31]

1) Perform the feedforward phase and compute
z=WTx+b
2) Find the k largest activations of z and set
the rest to zero.
Zrye =0 where T =suppy(z)
3) Compute the output and the error using the
sparsified z.
x=Wz+b'
E = |lx - &I

3) Backpropagate the error through the k largest

activations defined by I and iterate.

5 EXPERIMENT
5.1 Dataset

Our experiment is based on a classification dataset provided by
Naver, which amounts to a total of about 900 million queries belong-
ing to 40 collections, i.e. classes. Since the distribution of collections
is skewed, we decided to use only the largest seven collections for
our experiment. Table 1 shows their statistic. The queries we use
for our experiment takes over 70% of the whole dataset, so can
be regarded as the representatives. We randomly sampled about
200,000 queries per collection to result in about 1,400,000 queries
in total. The ratio of training, development, and test sets is 8:1:1.
Note that the queries are in Korean.

Table 1: Dataset statistic (before sampling)

Collection Count Ratio (%)
News 140,742,157 15.77
Image 116,241,259 13.02

Blog 105,939,264 11.87
Review 95,662,634 10.72
Website 68,152,695 7.64

Shopping 56,322,435 6.31
Local 49,990,447 5.60
Total 633,050,891 70.93
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The samples comprise two fields: ‘collection’ and ‘query. A
query’s collection is recorded based on user clicks; if a user submits
a query then clicks a document that belongs to a specific collection,
that becomes the query’s collection. Since users may click docu-
ments from different collections after issuing the same query, the
same query can point to multiple collections, generating separate
samples. We regard all such cases as correct labels.

5.2 Process

The overall procedure is depicted in Figure 4. We explain each step
in detail below.

Query o Subspace
Query A Classifier >
Preprocessing Embedding Training Selection and
Generation Interpretation

Figure 4: Experiment Process

5.3 Query Segmentation

Korean does not strictly require word spacing, and users have
freedom, especially for constructing noun phrases. But since the
DisC model we use to generate query embeddings is built upon
word embeddings (Section 4.1), queries should be separated into
words or morphemes (Figure 5). We did this segmentation using a
proprietary Korean morphological analyzer developed by Naver?.

ElectricityBillCalculator — Electricity  Bill Calculator
7|23 A7 I a3 H 7|

Figure 5: An example of Korean query segmentation (trans-
lated into English)

5.4 Query Embedding Generation

We used fastText model to generate word embeddings. We con-
structed the training corpus by merging Korean Wikipedia dump
(2019-01-23) and the queries provided by Naver. The corpus con-
tains about 10 million lines of Korean text and is preprocessed using
the same morphological analyzer used for query segmentation. We
used gensim? library to generate fastText embeddings using the
default parameters provided by the library.

DisC embeddings of the queries are then generated based on
the word embeddings. We used up to only 2-grams of queries to
generate DisC embeddings because a large proportion of queries
are shorter than three words. The resulting query embeddings have
600 dimensions: 1-300 dimensions represent 1-gram space, and
301-600 dimensions represent 2-gram space.

“There are some free Korean morphological analyzers available, e.g.
https://bitbucket.org/eunjeon/mecab-ko/src/master/
Shttps://radimrehurek.com/gensim/
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5.5 Sparsify Query Embeddings

We compared the result between the dense and sparse query em-
beddings, as mentioned in Section 4.5. To generate sparse query
embeddings, we first decompose the dense word embeddings to
sparse embeddings. For that, we use Winner-Take-All Autoencoder
with a batch size of 64, the target dimension of 2,000, allowing only
N% of dimensions to have non-zero values. The Ns we tested is
presented in Section 6.

Then we generated DisC embeddings based on the sparse embed-
dings using the same settings we used with the dense embeddings.
So the resulting sparse query embeddings have 4,000 dimensions,
1-2,000 dimensions for 1-grams and 2,001-4,000 dimensions for
2-grams.

5.6 Classifier Hyperparameter Tuning and
Training
We used xgboost to train the classifier. The library requires hyper-
parameters (e.g. max_depth, gamma) to be determined before start
training. We used the dev set for finding optimal hyperparameters.
To efficiently search the best hyperparameters, we utilized Bayesian

Optimization (please refer to [46]). Bayesian Optimization works by
approximating the behavior of unknown objective functions using
Bayesian learning or Gaussian process, then try to search the most
fruitful hyperparameter space. We used bayesian-optimization?
library in our experiment. Using the found parameters, we trained
the classifier with the train set.

5.7 Subspace Selection and Interpretation

To identify subspaces, we used SHAP library® released by the au-
thors of [29]. Specifically, we used TreeExplainer module [28]
which is designed to be used with Gradient Boosting Tree models
like xgboost. The SHAP model requires not only a trained model
to be analyzed but also additional samples to calculate the feature
attribution scores. We utilized the test set as the additional sam-
ples. After the calculation, each dimension has seven scores for
seven collections, respectively. We determined the subspace for
each collection by selecting top-k dimensions per collection.

We then generated the interpretation of each subspace using
the method described in Section 4.4. The interpretation result is
different depending on the choice of k, which will be shown in the
next section.

6 RESULT

6.1 Classification Performance

Although the main impetus of this paper is not to show how the
best performing query classifier can be constructed, examining the
classification performance of the different versions of the classifier
can help to have confidence on our method of subspace selection
and interpretation. In particular, it is worth comparing the perfor-
mance of dense embeddings and sparse embeddings with different
sparsity (i.e. the ratio of non-zero dimensions) settings. Note that

“https://github.com/fmfn/BayesianOptimization
Shttps://github.com/slundberg/shap
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the hyperparameters for different embedding types are automat-
ically searched as described in Section 5.6 and might be different
depending on embedding types.

Table 2 shows the overall classification performance of the em-
bedding variations. We achieved the best performance with the
dense embeddings. With the sparse embeddings, we see decreasing
performances as we decrease the sparsity (i.e. the ratio of non-zero).
It is expected because in sparse embeddings only a small portion
(e.g. 1%) of dimensions are activated, and a decrease in sparsity
incurs information loss. Nonetheless, the sparse embeddings seem
to be successful in capturing the ‘essence’ of the original dense
embeddings because they show competitive classification perfor-
mance.

Table 2: Classification performance. The sparsity indicates
the average ratio of non-zero dimensions in sparse embed-
dings.

Embeddings Precision Recall f1-score
Dense 0.649 0.653 0.644
Sparse, sparsity = 5% 0.644 0.651 0.639
Sparse, sparsity = 2% 0.638 0.645 0.633
Sparse, sparsity = 1% 0.635 0.643 0.630
Sparse, sparsity = 0.5% 0.630 0.638 0.625

We also show confusion matrix of two classifiers: Dense and
Sparse (sparsity = 5%). Note that the classification accuracy is high
with Website and Shopping but low with Blog and Image (Figure
6). The queries of Website and Shopping are expected to show rel-
atively high semantic & symbolic regularities, whereas the queries
of Blog and Image can be talking about anything. We conjecture
this incurred the gap in the classification performance. We show the
query samples in Table 3 to give the sense of conceptual variation
in queries that belong to such collections.

Accuracy (Sparse)

News [CIZEY 0045 0054 0031 0106 0042 0048

Review 0.030 0072 0018 0048 0105 0220

Accuracy (Dense)

News [EZEN 0.040 0064 0018 0108 0050 0.047

Review 0028 [UEICH 0087 0010 0045 0101 0213

Blog 0058 0124 0345 0012 0115 0160 0.185 06 Blog 0061 0135 0345 0030 0105 0146 0.178 06

Website 0011 0003 ouoanooa oots 0022
0.4

0148 0,063

Website 0.009 0002 0005 [GEEEN 0005 0016 0020

True collection

Image 0109 0065 005 0008 0157 0067

Shopping 0009 0035 0063 0012 0051 [RXRIN 0024 02
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Figure 6: Confusion matrix of Dense and Sparse (5%)

6.2 Subspace Selection

We present the identified subspace for each collection, which is a
list of top k important dimensions selected based on SHAP values.
For brevity, we only show the top 5 dimensions here, but we can
decide on the k according to applications’ need. With the dense
embeddings the Blog and Local shares the 260th dimension as the
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Table 3: Query samples. The keywords are translated from
Korean and joined by underscore for readability. Classifying
Website and Shopping was highly accurate, whereas classify-
ing Blog and Image wasn’t (Figure 6).

Collection Queries

Website linkedin, naver, youtube, uk_google, facebook

Shopping  nike_polo, apple_watch_stand, lacoste_sling_bag,
maserati_headlight_price

Blog relative_pitch_test, backpack_for_trip, Gang-
nam_restaurants, low-capital_cafe, cellulite

Image tom_cruise, batchroom_tongs, adidas_exin,

men_short_haircut, strawberry_cake

most prominent dimension, implying that there is some conceptual
overlap between two collections. It is also noticeable that the most
of the salient dimensions belong to 1-gram space (dense: 1-300th,
sparse: 1-2000th) of query embeddings, implying that the order of
keywords in queries is usually less important (Table 4).

Table 4: The result of subspace selection. The numbers repre-
sent the index of dimensions ordered by their SHAP values
in reverse order.

Collection Embeddings

Dense Sparse (5%)
News 228, 300, 120, 45, 253 890, 1604, 1272, 400, 1207
Review 11, 70, 178, 238, 28 1124, 3054, 1207, 593, 71
Blog 260, 275, 230, 172, 28 278, 2053, 3568, 1371, 3127
Website 3,101, 203, 100, 84 1331, 1120, 1617, 278, 1124
Image 130, 42, 123, 200, 18 400, 96, 466, 1207, 264
Shopping 186, 240, 18, 124, 242 1749, 890, 1170, 747, 1207
Local 260, 136, 299, 134,79 687, 2867, 1590, 918, 890

The dimensions that constitute subspaces are usually different
depending on a target collection. This couldn’t happen if a few most
informative dimensions are always important for the classification,
confirming that our hypothesis — embedding dimensions can serve
as unique and meaningful features — is right (Table 4 and 5).

We next show how the SHAP values decrease as the ranks of
dimensions decrease. For readability we only present the result of
two collections, Website and Blog, in which the classifier showed
the highest and the lowest performance respectively (Figure 7).

Dense (left). The SHAP values decrease for about top 5% di-
mensions and then much more gently afterward. This suggests
that there are a few dimensions that significantly contribute to the
classification. The trend is weaker in Blog, in which the classifier
showed the lowest performance among all the collections. This
means the classifier is having trouble to identify a small set of high
confidence dimensions.
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Table 5: The ratio of unique dimensions among every collec-
tion. The dimensions of Sparse embeddings tend to stay as

unique features for each collection. The ratio is calculated
length(set(top n% dims))
length(top n% dims)

. . Embeddings
Top n% dimensions

Dense Sparse (5%)
1% 0.905 0.871
2% 0.821 0.839
3% 0.786 0.802
4% 0.762 0.778
5% 0.695 0.743

Sparse (right). The SHAP values change almost identically be-
tween the two collections, although they differ widely in terms of
classification accuracy. An interesting pattern observed is that after
the first drop, there is another drop of SHAP values occurring right
after the first 2000 dimensions, which corresponds to the number
of dimension for 1-gram. It indicates that 1-gram embeddings are
more important than 2-gram embeddings of queries in determining
the query’s class.

embeddings = Dense

embeddings = Sparse (5%)
10

Collection
Website
Blog

H O ®

SHAP value (log)
N

N\

1000 2000 3000 4000
Top k-th dimension

0 200 400 600 0
Top k-th dimension

Figure 7: The figure shows the trend of how SHAP values
change as the importance of the dimensions decreases. The
straight lines indicate the regressions that fit the data points.
The y axis (SHAP value) is in log-scale.

6.3 Subspace Interpretation

A subspace interpretation is generated by listing the words whose
embeddings have on average high values for the dimensions that
constitute the subspace. If such words are deemed to represent
the unique characteristics of a query class, it is an indication that
the subspace selection and its interpretation is done correctly. We
only used top 5% of all the dimensions (top 30 for Dense, top 200
for Sparse) to calculate the subspace_score of words introduced in
Equation (2). The interpretation result is shown in Table 6.

The interpretation of the dense embeddings seems inconsistent
and noisy, whereas that of sparse embeddings seems conceptually
coherent and relevant to the collection. We conjecture that this is
because the dimensions of the dense embeddings are conceptually
not distinct enough to generate consistent words. In other words,
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Table 6: Subspace interpretation. The words are translated from Korean and joined by an underscore for readability. We show
only the top 5 words for brevity. The interpretations that seem to conceptually consistent and match with target collection’s

common concepts are marked as bold.

Collection Embeddings
Dense Sparse (sparsity = 5%)
News loser, bg, dxbg, Hye-ri Jo (athlete), rbr control_room, visiting nurse, deueob, attractions,
memorial_altar
Review Monrovia, shipboard, flat_cap, firebird, uss_missouri coffee_shop, hot_spring, cafe, newsbreak, lux-
ury_seafood
Blog shellfish_barrel, down_line, turn_around, turning_around, remaining, waiter, by-election, blood_donation,
webtoon_publishing_platform stew_ingredients
Website Ahsan, Shetland, ggc, nbgc, rvr long_wallet, Giheung (area), re-install, incomplete, install
Image hjho, iho, brow, nescafe, Kobaco (government agency) Ilsan (area), Nampodong (area), massage, Bucheon (area), Il-
san_maddudong (area)
Shopping ad_hoc, tide, secure, throb, Symbicort (medicine) high_glossy, Daiso (shop), tidy, bag, west_ Bundang
(area)
Local stabilize, emergency_exit, evacuation, stopping, overload Bucheon, Gwangan, Ansan, Geomdan, Bupyeong (all ar-

eas)

different concepts are mixed into the same dimension, possibly mak-
ing them ambiguous. It was predicted by the authors of [37], that
“the same compact set of features (of low-dimensional embeddings)
may not be sufficient to describe all semantic domains of a full adult
vocabulary.” The result that the dense embeddings have ambiguous
dimensions but showed the best classification performance requires
further investigation.

To quantitatively evaluate the conceptual consistency (i.e. inter-
pretability) of subspace interpretation, we applied topic coherence
method. Topic coherence is a method of automatically measuring
the interpretability of topic models, which is reported to be closely
correlated with human evaluation [36, 38]. We used the topic coher-
ence model introduced in [45]. It is observed that the interpretation
generated by Sparse generally exhibits higher cohesion scores
(Table 7).

Table 7: Topical cohesion of subspace. The higher the better.

Collection Embeddings
Dense Sparse (5%)

News -16.100 -17.906
Review -14.961 -12.997
Blog -16.929 -15.104
Website -18.453 -11.202
Image -18.870 -9.310
Shopping -19.363 -15.439
Local -17.355 -13.741

7 CONCLUSION

In this paper we presented our method of selecting and interpreting
embedding subspace for query classification task. We also showed
that the sparse embeddings gave a more precise result. Although
we validated the proposed method with query classification, our
method can be applied to other text classification tasks provided that
we have applicable feature attribution methods for classification
models. We hope our method help understand and improve neural
text classifier’s performance, which will be our future work.
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