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ABSTRACT
Ranking functions are commonly used in a wide variety of ap-
plications; these functions vary in complexity from simple point
systems, to traditional weighted-sums, to more complex decision
trees and results from Learning-to-Rank techniques. As the com-
munity realizes the significant societal impacts of the widespread
use of algorithms in decisions, there has been a push towards ex-
plainability and transparency in decision processes and results. In
this paper, we focus on providing tools towards explainability and
transparency of ranking functions, with a focus towards making
the impacts of the ranking process understandable a priori, so that
expectations on the outcome are known in advance. To this aim, we
first design metrics to assist in making the ranking process trans-
parent to both the decision-makers and the entities being ranked,
by assessing the expected importance of each parameter used in the
ranking process in the creation of the final ranked outcome, using
information about the ranking functions, as well as the underlying
distributions of the parameters involved in the ranking. Using our
proposed metrics, we investigate algorithms to adjust and translate
traditional weighted-sum functions to better reflect the intention
of the decision-maker.

1 INTRODUCTION
Rankings are commonly used to make decisions and allocate re-
sources in a wide variety of applications such as school admissions,
job applications, public housing allocation, sport competition judg-
ing, organ donation lists. Decision-making techniques resulting in
rankings of objects using multiples criteria have been studied for
centuries [7]. However, these techniques were traditionally devel-
oped with the decision-maker’s interests and constraints in mind,
and did not focus on transparency and explainability of the process
for the objects/individuals being affected by the outcome of the
rankings.

With today’s widespread use of algorithms to make decisions
in an information-based society, there has been a realization that
the outcomes of these algorithms have significant societal impacts,
and that the algorithm designers have a responsibility to address
the ethical considerations that arise when applying algorithms to
individual, groups, or entities. This has been recognized by sev-
eral research communities, such as Artificial Intelligence [4, 18],

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EARS’19, July 25, 2019, Paris, France
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Machine Learning [6], and Data Management [16]. Without trans-
parent and explainable processes, it is not possible to verify whether
the outcomes satisfy ethical and fair constraints.

Traditionally, work on ranking algorithms and techniques have
either assumed that the ranking function was given and satisfied
some required properties, such as monotonicity, and considered the
ranking function as an oracle, or have focused on designing com-
plex query functions applicable to specific domains [7, 12]. Little
attention has been given to making the ranking function itself trans-
parent. In fact, many techniques preprocess the underlying data
being ranked, typically via normalization, so that it has desirable
properties for the ranking algorithm. The resulting transformation
often murks the data and contributes to making the process opaque.

This paper focuses on the analysis of ranking functions and the
relative impact of individual ranking metrics on the overall ranked
results in order to understand the impact of the ranking process a
priori, based on the ranking functions and data distribution. Our
goal is to help decision-makers understand the behavior of their
ranking functions, and to provide entities being ranked with some
transparent and understandable explanation of the ranking process.

The paper makes the following contributions:
• The design of transparent and understandable metrics to
clarify the ranking process, by assessing the expected im-
portance of each parameter used in the ranking process in
the creation of the final ranked outcome, using information
about the ranking functions themselves, as well as observa-
tions of the underlying distributions of the parameter values
involved in the ranking. (Section 2)

• Using our metrics, we propose heuristics to adjust and trans-
late traditional weighted-sum functions to better take into
account the desired importance of each parameter in the
final ranking. (Section 3)

2 EXPLAINING RANKING FUNCTIONS
We aim at designing metrics to explain the expected behaviors of
ranking functions based on the underlying distributions of the pa-
rameters involved in the rankings. To better understand the ranking
mechanics, we focus our preliminary analysis on weighted-sum
ranking functions, which are widely used in practice, for instance
in college rankings, or student admissions.

We define our scoring function f over over a set of P ranking
parametersp1, ....,pP , with weightsW1, ...,WP such that

∑P
i=1Wi =

1, over an objecto as f (o) =
∑P
i=1Wi ∗ pi (o), wherepi (o) is the value

of parameter pi for object o.
Figure 1 shows the behavior of a simple weighted-sum ranking

function over two parameters values X (o) and Y (o) (denoted X
and Y for simplicity), f (o) = 0.5X + 0.5Y , used to identify the
top-50 objects out of 1,000 objects, depending on the underlying
distributions of X and Y . We can observe that the score of the top
50th object (defined as the threshold at 50, red line in Figure 1)
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(a) X and Y both follow uniform
distributions in [0, 1].

(b) X is normally distributed
(µ = 0.5,σ = 0.15),
Y follows a uniform distribution in [0, 1].

(c) X and Y are both normally distributed
(µX = 0.5, σX = 0.15, µY = 0.75, σY = 0.05).

Figure 1: Top-k thresholds (score = 0.5X + 0.5Y ) based on the underlying distribution of values (N=1000, k=50), X and Y are
independent variables.

varies depending on the underlying distributions of X and Y . This
in turn has an impact on the minimum score required in for each
dimension (parameter) for an object to qualify as being in the top-50,
which we define as the floor value.

Definition 2.1 (Threshold at k). Given a ranking function f , over
a set of P ranking parameters p1, ....,pP , applied to a set of objects
O, we compute the threshold valueTk as the kth highest f (o) value
for all objects o ∈ O.

In other words, this would be the f (o) value of the worst object
that still makes it into the top k. For instance, if 1,000 objects are
distributed uniformly in both X and Y as shown in Figure 1(a), the
sum 0.5X + 0.5Y would follow a triangular distribution:

f(0.5X+0.5Y )(x) =

{
x 0 ≤ x ≤ 0.5
1 − x 0.5 ≤ x ≤ 1

From which we can trigonometrically estimate the value of the
threshold at k = 50 (95thpercentile), T50, of 0.5X + 0.5Y as 0.84.

Definition 2.2 (Parameter Floor at k). Given a threshold Tk a
parameter p and a ranking function f , the floor at k of p, noted
f loork (p), is the lowest value an object o′ can have in p that would
still allow for o′ to qualify in the top-k assuming all the other values
are maximized, that is for f (o′) ≥ Tk .

For instance, the floor at 50 for X if the objects are distributed
uniformly in both X and Y as shown in Figure 1(a), would be:

f loor50(X ) =
T50 −WY

WX
=

0.84 − 0.5
0.5

= 0.68

which geometrically corresponds to the intersection between f (o) =
0.5X + 0.5Y = T50 = 0.84, and Y = 1.

Figures 1(a-c) show the threshold values for various underlying
distributions of X and Y . Note that the actual T50 threshold com-
puted over the data points of Figure 1(a), which is 0.86, slightly
differs from the estimated threshold computed above because of
variations in the actual data distribution. The computed f loor50(X )

for the distributions of Figures 1(a-c) are 0.72, 0.52, and 0.5, respec-
tively. For the examples of Figure 1, the values for f loor50(Y ) are
the same asWX =WY .

We can use the floor value to define the disqualifying power of
each parameter of the scoring function.

Definition 2.3 (Disqualifying power of a Parameter at k). Given a
parameter floor f loork (p) for parameter p, the disqualifying power
of p at k , DQk (p), represents the percentage of objects o ∈ O for
which the value of o for p, p(o) is lower than f loork (p). Intuitively,
DQk (p) is the percentile rank of f loork (p) in p’s distribution.

The disqualifying power can be computed from the data, if avail-
able a priori, or estimated from knowledge of the underlying dis-
tribution. For instance, in Figure 1(b), Y is uniformly distributed
in [0, 1] and f loor50(Y ) = 0.52, the disqualifying factor of Y at 50,
DQ50(Y ), is then estimated to be DQ50(Y ) = 0.52. Similarly, in the
same Figure 1(b),X follows a normal distribution (µ = 0.5,σ = 0.15),
from which we can estimate DQ50(X ) = 0.5517 (z-value = 0.13).
Figure 1(c) exhibits distributions that are not centered on the same
values, which result in more variations in disqualifying power be-
tween X and Y : DQ50(X ) = 0.5517 as X follows the same distribu-
tion as in Figure 1(b), but DQ50(Y ) ≈ 0. In fact, as we decrease k/N
or increase the number of parameters in the ranking function, we
are less likely to observe positive disqualifying power values.

We can define the qualifying power similarly as the percentage
of objects that are qualified to belong to the top-k , by parameter p
alone.

Definition 2.4 (Qualifying power of a Parameter at k). Given a
thresholdTk for parameter p, the qualifying power of p at k ,Qk (p),
represents the percentage of objects o ∈ O for which the value of o
for p times the weightWp , p(o) ×Wp is higher than Tk .

In the examples of Figure 1, all qualifying powers are equal to 0,
as no object can be part of the top-50 answer if it has a score of 0 in
X (resp. Y ). As k/N increases, or as the weightsWi are adjusted as
we will see in the next section, the qualifying power of individual
attributes will become greater than 0.



An interesting observation, from looking at the distributions of
Figure 1, is that the two parameters X and Y account differently for
tuples that qualify as being part of the top-k , depending on their
underlying distribution. For instance in Figure 1(b), only 11 of the
top-50 objects have values higher than the threshold T50 = 0.76 for
both X and Y (green region). The rest of the 39 objects in the top-50
are qualified because one of their values (X or Y ) compensates for
a lower value in the other parameter. For these distributions, most
of the remaining objects qualify thanks to a high value of Y (35
objects, orange region), whereas only 3 objects qualify thanks to
a high value of X (blue region). For these particular distributions
of X and Y , we see that for k = 50, Y dominates the ranking,
despite the underlying scoring function f = 0.5X + 0.5Y giving
the same importance to both X and Y . We can compute the relative
importance ofX andY in Figure 1(b) for f , as Ik (X ) = (11+3)/50 =
0.28, and Ik (Y ) = (11 + 35)/50 = 0.92. We define the importance of
a parameter as:

Definition 2.5 (Importance of a Parameter at k). Given a ranking
function f , over a set of P ranking parameters p1, ....,pP , applied
to a set of objects o ∈ O, and a threshold value Tk , we compute
Ik (p), the importance of a parameter p at k , as the percentage of
objects in the top-k answers (i.e, with f (o) ≥ Tk ) such that the value
p(o) ≥ Tk . If we only have distributions and not values this can be
expressed by the conditional probability Pr(p(o) ≥ Tk | f (o) ≥ Tk )

In Figure 1(c), we can see that the relative importance of X and
Y is more balanced, with 20 objects in the green region, 19 in the
orange region, and 11 in the blue region, resulting in importance
values: I50(X ) = (20 + 11)/50 = 0.62, and I50(Y ) = (20 + 19)/50 =
0.78. The independent uniform distributions of Figure 1(a) result in
equal importance for X and Y I50(X ) = I50(Y ) = (8 + 34)/50 = 0.84
with 34 objects in the common green region and 8 objects each in
the orange and blue regions.

Importance of a parameter p expresses the percentage of objects
that dominate an idealized object o′ that would be exactly on the
threshold, with all parameter values equal to the threshold, for p.
If p’s value falls behind this object for many other objects in the
top-k answer, it follows that objects are being selected as part of
the top-k despite their low values for p. On the other hand, if values
of p almost always exceed the value of p for o′, we see that p is
contributing to these objects’ selections, making p an important
parameter in the ranking.

3 ADJUSTING RANKING FUNCTIONS
Armed with the knowledge derived from the analysis of ranking
functions behavior, we now turn our focus to the design of ranking
functions that better fit the needs of the decision-makers while
still being understandable a priori to the targeted audience (public,
entities, or applicants being ranked).

As discussed in the previous Section, the underlying distribution
of data has an impact on how much each parameter contributes to
the final ranking. Figure 1 illustrated this by showing that, despite
sharing the same ranking function, three different distributions
of X and Y can lead to significant difference in the importance
(Definition 2.5) of each of these parameters in the k top answers. In
that example, the ranking processes used an equal weight ranking
function, f (o) = 0.5X + 0.5Y , however, the final ranking was more

influenced by the value of the parameter Y for object o, for the
distributions of Figure 1(b) and (c). Intuitively, it seems reasonable
to assume that the intention of the decision-maker by using an equal
weight ranking function was for both parameters to contribute
equally to the top-k outcome. One possibility to achieve that goal
is to adjust the ranking function weightsWX andWY so that the
resulting importance ratio of parameters matches that envisioned
by the decision-maker (equal importance in our example).

Figure 2 shows resulting adjustments for the distributions of
Figure 1. Visually, we can see that the slope of the ranking func-
tion is adjusted so that the number of points in the orange and
blue region are equal. In some cases, such as Figure 2(b), this re-
quires adjusting the Tk value. The new threshold line is shown in
green and corresponds to f (o) = 0.78X + 0.22Y for Figure 2(b), and
f (o) = 0.56X + 0.44Y for Figure 2(c). The corresponding values
for I50(X ) and I50(Y ) become I50(X ) = I50(Y ) = 0.72 for Figure 2(b)
and I50(X ) = I50(Y ) = 0.7 for Figure 2(c). The change in weight
therefore compensates for the distribution skew and ensures that
the intent of the ranking function designer is preserved. The impor-
tance of X and Y for the uniform distributions of Figure 1(a) were
equal, so the weights are unchanged.

Notice that the adjustment of the ranking function of Figure
Figure 2(b) result is some objects being qualified on the X value
alone, asWX > T50 = 0.71. The qualifying power (Definition 2.4)
Q50(X ) is then equal to 1 minus the percentile-rank of (T50/WX =

0.71/0.78 = 0.91) in X distribution: Q50(X ) = 0.0032.
Figure 3 shows how the importance of X changes as a function

of the weight of the parameter X in the ranking function for the
data distributions of Figure 2(b).

In the general case, the weights can be adjusted to return desired
values of importance by selecting the desired values of importance
Ip for each relevant parameter, then creating a function which
determines the loss for each set of weights as:

(DesiredWeiдht −
I (X )∑pn
p0 I (p)

)2

Then a standard optimization algorithm can be run to choose the
weights that get closest to the desired importance. In the case where
the distributions are given instead of the points, this minimum can
often be calculated numerically.

The resulting desired weights would reflect the intention of
the decision-maker by taking into account the underlying data
distribution and assigning weights accordingly.

Our adjustment function could be combined with additional
constraints. Consider a scenario where in addition to X and Y
being of comparable desired importance, the decision maker also
requires both X and Y to be above a minimum value. For instance,
in the distribution of Figure 2(b), if both X and Y are required to be
above 0.5 (e.g., a candidate needs a passing grade in both X and Y ),
then the adjusted ranking function needs to take into account only
the points in the upper right quadrant of the figure, and the loss
function should be adjusted accordingly.

4 RELATEDWORK
Ranking functions have been widely studied in the literature. The
Multi Criteria Decision Analysis community focuses on making



(a) X and Y both follow uniform
distributions in [0, 1].

0.71

(b) X is normally distributed (µ = 0.5,σ =
0.15),
Y follows a uniform distribution in [0, 1].

(c) X and Y are both normally distributed
(µX = 0.5, σX = 0.15, µY = 0.75, σY = 0.05).

Figure 2: Function adjustments of the ranking functions of Figure 1

Figure 3: Importance of X at k = 50 as a function ofWX for
the data distributions of Figure 2(b)

decisions from a set of possibly conflicting criteria [7, 19]. The tech-
niques are typically aimed at experts, and provide complex compu-
tation, often hidden in black-box algorithms, with little possibility
of explanation. Ranking functions are also widely used in Infor-
mation Retrieval [12, 14]. More recently, the Information Retrieval
community has focused on learning-to-rank approaches [10, 11].
However such techniques produce complex ranking functions, that
are impossible to explain to a non-expert.

Several measures have been proposed to compare the outcomes
of ranking processes. The Spearman ρ [15], and Kendall τ [9] are
the most commonly used metrics to compute rank correlation. More
recently, distance measures have been proposed by the Database
community [5]. These focus on comparing the outputs of ranking
processes. In contrast, we focus on the behavior of the ranking
functions before the ranking takes place, by analysis the impact of
different data distributions on the ranking functions.

Recently, there has been a lot of discussion in the research com-
munity and in the media on the impact of algorithms in societal
issues and on the inherent bias in many algorithms, including rank-
ing algorithms. Recent work have looked at how to include fairness
and diversity into ranking techniques [1, 13, 21]. Our work is com-
plementary to these approaches: by providing tools to explain and

understand ranking processes, we can design more ethical ranking
functions.

Explainability and transparency have been at the forefront of
many works in Artificial Intelligence (e.g., [3]) and Machine Learn-
ing (e.g., [20]). This has been driven in part by political regulations
that call for “right to explanation” [8]. Work that aim to explain
rankings have mostly focused on a posteriori explanations of the
results. Most of these work focus on feature selection to explain
the contribution of each individual features to the final ranking
outcome, in a process similar to sensitivity analysis [2, 17]. In con-
trast, we focus on making the process and parameter importance
transparent so that the information is shared a priori.

5 CONCLUSIONS AND FUTUREWORK
We proposed a set of metrics to explain the expected behaviors of
ranking processes. Using these metrics, we proposed techniques to
adjust the weights of ranking functions to better match the inten-
tion of the decision-maker. Our work has focused on weighted-sum
ranking functions; we plan to investigate a wider range of functions,
including step functions, non-linear functions, decision trees and
the output of learning-to-rank algorithms. In addition, we plan to
extend and deepen our analysis to investigate how these metrics
behave in a wider range of situations: varying k , increasing the
number of ranking parameters P , and varying the data distributions
(atypical distributions, correlation, or partial distribution informa-
tion). Of course, we may not have access, or knowledge, of the full
real-world data distribution. We will need to study the behavior
of ranking functions in the presence of atypical distributions, or
partial information on the underlying distributions (e.g., coarse
histograms).

This work aims at providing an understanding on the impact
of individual parameters in the ranking process in order to assist
decision-makers in designing their functions to reflect their goals,
and to provide explanations to the entities being ranked. In particu-
lar, our proposed importance metric, can be seen as an explanation
of the relative impact of the parameters on the final ranked outcome,
which may be different from the impact on the score itself.
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