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ABSTRACT
Classically in recommendation, the goal is to extract information
from large numerical feedback matrices. Textual data which of-
ten accompany such feedback has proven useful to improve those
systems. However text is generally considered as a side feature,
appended to matrix factorization algorithms. In this article, we
attempt to make a better use of review texts and seek to build a rec-
ommender system that does not fully rely on matrix factorization.
Our goal is to learn relevant and understandable user and item pro-
files from both textual data and rating. To do so, We propose to bind
two closely related tasks –sentiment analysis and recommendation–
by using a double network architecture.
(1) We demonstrate the interest of linking two neural networks to
perform both text classification & profile learning.
(2) We introduce a personalized attention mechanism to link them;
It enables us to provide built-in explanations by exploiting the
underlying learnt textual latent space. This latter point is a note-
worthy way to overcome the classical black-box phenomenon in
collaborative filtering approaches.
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• Information systems → Collaborative filtering; Personal-
ization.
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1 INTRODUCTION
In collaborative filtering, one usual objective is to predict the miss-
ing values within a rating matrix. Since the Netflix challenge, matrix
factorization algorithms are mainly used for such task [18]. Thanks
to the use of a growing number of factors such as time [17, 22],
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social links [12] or text [20], those algorithms became more and
more accurate. However, despite their growing accuracy, recent
collaborative filtering methods are still widely considered as black-
boxes [3]. In fact, many commercial recommender systems are just
plain lists of items with little or no explanations (i.e youtube, net-
flix). This stems from the fact that factorization algorithms mainly
extract information from numerical matrices and only treat text as
a contextual information [1, 9, 19, 20].

In this paper, we argue that text should be as important as ratings
when modeling user and items because it enables built-in expla-
nation. We aim at building a recommender system which is able
to, in addition to accurately predict one’s rating, provide relevant
information to the user on why this specific item should please him.
One common way to do so is to append a text generation objective
to predict the full review text in addition to the rating [23]. Such
generated text is supposed to give a glimpse on what a user could
like or dislike about one product. However, generating text has a
major issue: it’s a computationally intensive hard task. A lot of re-
sources are needed to produce a text with relatively low guarantees
on its quality. In fact, items can have very specific attributes which
are hard to capture for language models.

Here, alternatively, we propose an extractive mechanism. Our
model, instead of directly generating text, should be able to find
relevant bits of text within existing reviews. To do so, we draw
inspiration from recent advances in sentiment analysis. Multiple
papers show that attentionmechanisms are able to focus on relevant
parts of text in order to accurately predict sentiment [7, 27]. We
propose to take advantage of this property of attentional models
to directly find important user preferences and item features from
existing review texts.

Thus, to learn specific features or preferences into user and item
profiles, we build a personalized attention mechanism. It is de-
signed to decouple the focus into a two part attention: One generic,
non-conditional, part and a personalized one, conditioned on the
(user,item) pair. The goal is to encode specific words and sentences
such as attributes or brands within user and item profiles. We use
this mechanism to bind two tasks: sentiment analysis and recom-
mendation.

Conveniently, both tasks have the same objective: rating predic-
tion. Binding them with our personalized attention module forces
the recommender module to be grounded in textual data and pro-
vides regularization. It also gives us a built-in way to sort all existing
reviews, sentences and words with respect to a target users prefer-
ences which enables us to provide extractive explanations.

https://doi.org/10.1145/1122445.1122456
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To sum up, we introduce two original ideas with respect to the
literature:

(1) We observe that sentiment analysis and recommendation are
two closely related tasks and we tackle them using a bi-net
architecture –as it can be done with Siamese networks [5] or
GANs[11]– to predict ratings from both texts and user/item
profiles. Doing this, we preserve the strengths of both archi-
tectures.

(2) We propose a personalized attention mechanism as a link
between those two neural networks. Doing this, we naturally
bring built-in explanations to the recommender system by
selecting the words/sentences highlighted by the attention
parameters.

In this paper, we propose an elegant way to improve perfor-
mance on both sentiment classification & recommendation tasks
while providing built-in personalized explanations associated to
our suggestions.

This article is organized as follows: As preliminaries (section 2),
We first review some key concepts about collaborative filtering and
how is our work in line with respect to relatedwork.We also explicit
how neural networks with attention are used for sentiment analysis.
Then (section 3), we describe our bi-model we use to build profiles
(section 3). Finally (section 4), we evaluate both quantitatively and
qualitatively learnt profiles.

2 PRELIMINARIES
Here, to model each user and product in an interpretable fashion,
we propose to bind a collaborative filtering feed-forward net with a
hierarchical recurrent net with attention. In the following section,
we first review some key concepts about collaborative filtering.
Then, we summarize how recurrent neural networks are used for
sentiment analysis and how attention improves this process.

2.1 Collaborative Filtering
Theoretically, Collaborative Filtering (CF) is a way to harness the
"wisdom" of the crowd by assuming that people expressing common
opinions on a subset of items are likely to have common interests.
Since the Netflix challenge [4], the most known CF algorithm is
matrix factorization [18]. It frames recommendation as a matrix
completion problem which is solved by factorizing this matrix.
This decomposition produces users P = {pu }u=1, ...,Nu ∈ RNu×Z

and items Q = {qi }i=1, ...,Ni ∈ RNi×Z profiles whose dot product
should accurately predict the missing values ˆrui .

ˆrui ≈ qTi pu , qi , pu ∈ RZ×Z (1)

As commonly observed with factorization algorithms, each la-
tent dimension corresponds to an abstract attribute; a matching of
local attributes results in a higher rating. Also, in recommendation,
ratings are highly biased. Some people tend to always over/under
rate and some products can be under/over rated. Classically, those
rating bias are modeled by decomposing the full rating into the
sum of a global mean µ, a product mean bi , a user mean bu and the
modeled interaction qTi pu . Formally a rating is predicted as such:

ˆrui = µ + bi + bu + qTi pu (2)
With such modeling, latent profiles learn deviations from the

mean ratings. Multiple variants exists, taking into account multiple
biases or factors such as time [17, 22], social links [12] or text
[20]. Constraining learnt profiles with additional information is a
common way to improve their regularization and thus, the accuracy
of their predictions.

Alongwith recent NLP progress, the focus of profiling has shifted
from rating matrix to review text. Text has the advantage of con-
taining more information while being readily understandable. Pure
text-similarity based recommender systems show promising results
[6, 9]. Our work is in line with those references, yet, it is original in
two ways. First, mixing text analysis and profile learning enables us
to consider recommendation as a byproduct of sentiment analysis.
Second, instead of trying to generate text to explain recommenda-
tion, we propose to use attention over existing reviews.

2.2 Recurrent Neural Networks and Sentiment
Analysis

Because of it’s sequential nature Recurrent Neural Networks (RNN)
are often used to model text [10]. Unlike classical Feed-Forward
networks, RNN outputs yt are conditioned both on the input xt at
time t and on its own hidden state ht−1 at time t − 1:{

ht = σh (Whxt +Uhht−1 + bh )
yt = σy (Wyht + by )

(3)

where σ refers to a sigmoid activation function. ht , the hidden state
at time t , holds the "memory" of the sequence; It can be seen as a
latent representation of the past. However that classical version of
the recurrent neural network suffers from a well known vanishing
gradient problem. Due to the non-linearities and the number of
multiplications, the gradient becomes smaller and smaller when
back-propagating through time. This makes it hard to learn long-
term dependencies and thus to model long sequences. To overcome
this particular problem, gated recurrent units were created such as
the Long Short Term Memory (LSTM) [13] or the Gated Recurrent
Unit (GRU) [8].

More recently, stemming from machine translation, the concept
of neural attention [2] brought major improvement to NLP [25, 27].
It is the cornerstone of the embed, encode, attend, respond paradigm
[14]. In this approach, the embedding of a whole sequence –into
a single representation es–, is the weighted sum of every RNN
hidden state ht . For instance, in [27], given a sequence of hidden
states S = {h1, . . .,hi , . . . , hn }, the global embedding es is:

es =
n∑
i=1

αihi , ti = tanh(W hthi + bu ), αi =
exp(a⊺ti )∑
i exp(a⊺ti )

(4)

Normalized attention weights are computed using the dot product
between each RNN hidden state attention space projection ti and a
learnt attention vector a. This give the opportunity to the algorithm
to learn which parts of the sequence are significant.

This architecture constitute state of the art on the sentiment
classification task in term of accuracy; it is able to highlight the
words or phrases playing amajor role in the decision. A first attempt
to introduce personalization in this process was proposed by [7], but
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Figure 1: Detailed view of a hierarchical sentiment analysis
network as in [27] - It is composed of twoRBAs. One –RBAw–
to encode words into sentences and one –RBAs– to encode
sentences into reviews.

they introduced personalization as attributes within the attention
projection. On the contrary, we directly personalize the attention
vector so we can also exploit it as a collaborative filtering text
profile.

3 PARALLEL NETS FOR RECOMMENDATION
Binding text and recommendation has already been done multiple
times successfully [6, 9, 19, 22, 23]. In those previous work, three
different techniques are opposed:
• Linking factor models to text or topic modeling [1, 22]
• Capturing and using similarities from text reviews [6, 9]
• Appending a text generation objective [23]

Here, we follow the observation that sentiment analysis, when tak-
ing into account user and item biases, is in fact implicitly doing
recommendation. Theoretically, one can see our approach as a mix
between Transnet [6] –Which looks for similarities within writ-
ing patterns– and HFT [20] which constrains matrix factorization
profiles using latent topics. On one side, we constrain a MLP, on
the other we try to learn discriminative features from writing pat-
terns. Hierarchical attentional models for sentiment analysis[7, 27]
–personalized or not– can automatically extract discriminant fea-
tures, which is why we used them as starting point. However, per-
sonalization in [7] is minimal: only the projections of words and
sentences to attention space is modified by personalization, not the
attention vector itself. Here, we do the opposite and personalize the
attention vector itself. This way, our personalization can be seen as
an embedding and it gives us freedom to link it with other tasks as
well.

Our model (fig. 2), which we call Parallel Nets for Recommenda-
tion (PNR), is composed of two linked networks:
• MLPrec: A classical multi-layer perceptron (MLP); it takes
as input a couple of user and item embeddings to predict a
rating, just like matrix factorization in collaborative filtering.
• RNNpol: A hierarchical recurrent neural network composed
of two recurrent bi-directional and attentive RNNs (called
RBA (fig. 1 and detailed in the following); Its role is to encode
the reviews by words (level 1) and sentences (level 2) to
predict its polarity.

In the following, we first describe how is an RBA submodule con-
structed. Then, we detail how our full system is built; In particular,

we will focus on the personalized attention mechanism and the link
between the two networks.

3.1 Recurrent Bi-directional network with
Attention (RBA)

This module is the main block of our sentiment analysis network.
It takes as input a sequence and an attention vector, computes how
to weight all elements of the sequence and returns an embedding of
it (Fig. 1–RBA∗). Here, how we compute attention is original with
respect to the literature as we want it to be a byproduct of the user
and item profiles, which should encode preferences and attributes.

Formally, given a sequence S = {w1, . . . ,wi , . . . ,wn } of n el-
ements. Its embedding es is computed as follows. First, the se-
quence is fed through a bi-directional recurrent neural network
RF = {−→RF ,←−RF } which encodes the intra-sequence content. Each
element representations hi (eq. 5) are obtained by concatenating
per time-step both RNN outputs. Here, we use LSTM cells [13].

hi = [
−→
hi ;
←−
hi ],

−→
hi =

−→
RF (si ),

←−
hi =

←−
RF (si ), (5)

Each element hi is then projected in a non-linear way into attention
space in order to compute its affinity αi with an attention vector a
in the following way:

es =
n∑
i=1

αihi , ti = tanh(W tuhi + bu ),αi =
exp(a⊺ti )∑
i exp(a⊺ti )

(6)

Finally, these affinities α are normalized using a softmax function so
that they sum to one, the embedding es is the sum of each element,
weighted by their affinity to the attention vector a. This attention
vector a – which can be considered as an average representation
of all the important information – learns automatically what is
discriminant with respect to the task. In order to personalize such
attention, we define the vector aд as a combination of a global
attention vector and a personalized one stemming from the neural
network dedicated to rating prediction. Formally, vector a is defined
as such:

a = tanh(au,i + aд), au,i =W ℓℓ (7)
Where ℓ is an hidden state of the feed-forward rating prediction
net. The mapping from one net to another is done through a simple
linear transformationW ℓ . Thus, the personalized part attention
vector au,i stems directly from an interaction between the user and
item profiles ℓ (as explained in the following).

The global attention vector aims at encoding general discrimi-
nant words for sentiment analysis such as adjectives (i.e bad, great,
awesome) while its personalized counterpart au,i focuses on more
specific words, related to one product or one person’s interests (i.e
brands, attributes, features...). Some examples of words selected by
this attention mechanism are shown fig 3.

3.2 General Network Architecture
As shown by figure 2, our architecture is composed of two distinc-
tive neural networks. A deep feed forward net for recommendation
MLPrec – which takes as input a user and an item to predict a rating
– and a hierarchical recurrent neural network for sentiment analysis
RNNpol – predicting the polarity of review text –. In the follow-
ing, we first describe the deep recommendation network before
describing the recurrent sentiment analysis one .
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3.2.1 Multi-Layer Perceptron for Recommendation . The first part
of the network –MLPrec–is rather classical as it is a multilayer
perceptron. It takes as input a couple of (user , item) embeddings
which are concatenated and sequentially transformed into two
hidden representations ℓw and ℓs . Formally, given ℓ = [u; i] the
concatenation of user and item vectors, the predicted rating r̂ui is
obtained by successive transforms, ℓ in ℓw , ℓw in ℓs and finally, ℓs
in r̂ui . Each of these transforms is in itself a parameter. But, for
simplicity, we consider in the following a simple two layer deep
perceptron with tanh activations (eq. 8).
The objective function of this first network is to minimize the mean
squared error of rating prediction.

ℓw = tanh(W ℓw ℓ + bℓ),ℓs = tanh(Wws ℓw + bw )
r̂ui =W

sr ℓs + bs
(8)

3.2.2 Linking the networks with attention. A deep feed-forward
neural network produces multiple different hidden vectors during
forward propagation. Theoretically, the earliest –resulting of only
one (or a few) non-linear transformations– are considered as low-
level feature vectors. On the contrary, the latest are viewed as
high feature vectors. Therefore, ℓw which we want to encode the
personalized attention on words from the couple (u, i) should be
linked to one of the earliest layer, whereas ℓs which encodes the
attention over sentences should be linked to more refined features;
the latest hidden layers.
To link both networks we propose a simple linear transformation
as detailed in eq. 7. The goal is to constrain MLPrec to produce
hidden feature vectors which are related to RNNpol attentional
needs: finding discriminative words and sentences within review
text.

3.2.3 Hierarchical Recurrent Net for Sentiment Analysis. The sec-
ond net –RNNpol– only takes review text as input and tries to
predict its associated polarity. It is made of two consecutive RBA,
followed by a softmax classification layer. Therefore, It firsts encode
hierarchically the text – Word by word then sentence by sentence–
in an embedding vector er , before being classified. Formally, Each
sentences are encoded in es word by wordw . Then, each of these
sentences are encoded in er

RBAw : ({w}, ℓw ) 7→ es RBAs : ({es }, ℓs ) 7→ er (9)

Finally, the review embedding goes through a final softmax clas-
sification layerW pred :

ppol = softmax((W poler ) + bp ) (10)

The objective function of this net is to minimize negative log like-
lyhood.

3.2.4 Final layer alignment as regularizer. Our –two layer deep–
MLP is aligned with words and sentences embeddings within each
RBA’s attentional space and directly tries to predict a rating. Thus,
its last layer is supposed to be both encoding sentences and the full
review. Therefore, we propose to add a third layer toMLPrec. Thus,

Dataset #Reviews #Users #Items p(1) p(2) p(3) p(4) p(5)

Instant Video 37 126 5130 1685 4,6 5,1 11,3 22,7 56,3
Digital Music 64 706 5541 3568 4,3 4,7 10,5 25,6 55,0
Video Games 231 780 24 303 10 672 6,4 5,9 12,2 23,6 51,9
Clothes S.J. 278 677 39 387 23 033 4,0 5,5 10,9 20,9 58,6
Movies 1 697 533 123 960 50 052 6,1 6,0 11,9 22,6 53,4

Table 1: Rating stats (in %) of all datasets.

equation 8 becomes the following:

ℓw = tanh(W ℓw ℓ + bℓ), ℓs = tanh(Wws ℓw + bw ),
ℓs = tanh(W sr ℓr + br ), r̂ui =W

r ec ℓs + bs
(11)

Also, Following [6], having two identical embeddings outputs may
be beneficial as they both encode the same review. During training,
regardless of the network, to enforce such constraint, we mini-
mize the L2 distance between those two layers. We hope that such
constraint will help the MLP learn meaningful transformations.

3.2.5 Hyper-Parameters, Regularization, Objectives and Training.
Our models are implemented using Pytorch1. The two networks
have distinct objectives. The first one –MLPrec– predicts the rating
by minimizing MSE while the second one –RNNpol– minimizes
NLL over ratings. Both objectives – rating regression and polarity
prediction – areminimized jointly bymini-batched gradient descent
following the adam optimization scheme [16] with and without the
last layer regularization as previously detailed.

Hyper-parameters were fixed through our experiments: hidden
layers were the same size as word and sentences embeddings: 200
for RBA’s and words. 40 for the MLP. (20 for user/20 for item)

4 EXPERIMENTS
In this paper, our goal is to model users and items using review
texts and their associated rating. We aim at creating meaning-
ful profile embeddings that capture preference information. Our
model is trained on two separate task –sentiment analysis and
recommendation– that we both evaluate in the following. We
present beforehand the different datasets used to evaluate ourmodel.
Our first set of experiments are of quantitative order, to evaluate
whether or not our model is competitive in both learnt task. Then,
we propose different qualitative experiments where we tinker with
our personalized attention module to visualize what have been
learnt by the model. Finally we show how to use what has been
learnt by our model to enrich recommendation with existing review
data.

4.1 Data and preprocessing
For our experiments we use customer reviews extracted from Ama-
zon [21]. We randomly picked five distinct review databases of
different themes and sizes. Dataset statistics are detailed in table 1.
Here, we do not evaluate cold-start and use datasets where each
user or item have at least 5 reviews.

To tokenize review text and extract sentences we use the NLP
library spacy2. Word embeddings are learnt during training. Only

1http://pytorch.org/ – The full code will be released on github
2https://spacy.io/

http://pytorch.org/
https://spacy.io/
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Figure 2: Detailed view of the model for an input of n sentences ofm words: (Top) Sentiment RNN, composed of two RBA, one
for words (RBAw ) and one for sentences (RBAs ). – (Bottom) Deep Feed-Forward neural net for recommendation.

the 10.000 most used words are considered and embedded, the other
ones are replaced by a special token and embedding. Finally, we
split datasets in five equal parts to cross-validate our results. Each
experiments uses four splits as training (80%), one half split for
validation (10%) and the last half for evaluation (10%). This 80/10/10
split is a common way to evaluate recommendation models [1, 20].

4.2 Evaluating Sentiment Analysis:
Our first task is sentiment analysis. The goal is to predict the po-
larity of a text. We use three distinct baselines which also use text
embeddings
• FastText [15]. Stemming from the word2vec concept, the
idea is to learn specific word embeddings for classification. It
is largely considered as a strong baseline in text classification.
• HAN Hierarchical Attention Networks for Document Classi-
fication [27]: This model is similar to our recurrent neural
model, without personalized attention.
• NSUPA Neural Sentiment Classification with User & Product
Attention [7]: This model – which can be considered as SOTA
in sentiment analysis with respect to user reviews– is an
evolution of HAN to take into account the user and item
bias – as we do –. To do so, text is projected in an user-item
parametrized attention space. this is equivalent to replacing
ti from equation 6 by ti = tanh(W tu [hi ; i;u] + bu ).
• SVM Support Vector Machines. SVM are a tough to beat base-
line in binary sentiment classification [24]. Also, relatedwork
[7, 27] reported bad performance on fine-grained classifica-
tion task. After verification, SVM performance was indeed
poor. Therefore, SVM results are not reported below.

We use accuracy as measure to evaluate sentiment analysis. Re-
sults are reported in the table 2. Our first baseline –FastText– is

largely beaten by hierarchical models. Taking into account the
structure of reviews and sentences seems to yield a non-negligible
advantage over a simple aggregation of multiple word embeddings.

When comparing the three hierarchical models, it’s clear that
adding user and item bias is important. In fact, both personalized
model seem to perform as well. However our end goal is more to
transfer this learnt personalization to the recommendation task
rather than to be competitive on sentiment analysis.

FastText HAN† NSUPA PNR

Instant Video 62.60 64.50 65.88 66.60
Digital Music 63.58 68.03 70.08 68.80
Video Games 62.51 67.67 68.60 69.11
CSJ 67.83 71.96 71.99 71.49
Movies 64.56 68.95 71.20 71.62

Table 2: Classification accuracy on the sentiment analysis
task - presented values are the mean over 5 splits (en %) –
†equivalent to our sentiment net without personalization

4.3 Evaluating recommendation :
The second objective of our model is rating prediction, a standard
task in collaborative filtering.

As reference, we use two standard algorithms: Matrix Factoriza-
tion (MF) as described in eq. 1 and a two-layer deep MLP learned
without personalization. They only infer ratings using the learnt
user and item profiles on the rating matrix. These methods do not
take the text into account. On the contrary, our second reference,
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Dataset (#reviews) Mean (µ) w/offset MF MLP TransNet PNR + L2reg

Instant Video (37.126) 1.25 1.137 1.024 0.977 1.174 0.937 0.936
Digital Music (64,706) 1.19 0.965 0.903 0.885 1.522 0.876 0.832
Video Games (231,780) 1.45 1.281 1.267 1.271 1.313 1.135 1.117
CSJ (278,677) 1.215 1.323 1.126 1.172 1.285 1.169 1.096
Movie (1,697,533) 1.436 1.148 1.118 1.114 1.359 1.058 1.030

Table 3: Mean Squared Error on rating prediction. Baselines
are: The global dataset mean µ, the global user-item bias
(eq.2), A classic matrix factorization algorithm, a 2-layer
MLP (without personalization) and the Transnet model. Pre-
sented values are means over five splits.

TransNet3 [6], only takes the text into account: Rating prediction is
viewed as a matching task between all existing user and item text.
The rating r̂ui is directly predicted from data without any prior
factorization task. Also, as usual, we add trivial mean baselines:
One model which always predicts the mean of the train dataset
(µ) and one which predicts a user/item corrected mean (w/offset).
Such baselines represent an easy but surprisingly tough to beat
baseline for rating prediction. Results on the rating prediction task
are reported table 3. We use the Mean Squared Error as evaluation
measure.

With respect to rating prediction our model beats every base-
lines with or without last layer L2 regularization. Appending a
constrained third layer to the MLP is beneficial. Transnet is always
off by a large margin. We believe that the amount of text used
for our experiments was not enough to obtain competitive results.
Also, our model beats matrix factorization and MLP by a large mar-
gin. We argue that it shows the capacity of out model to extract
information from text and regularize latent profiles.

4.4 Visualizing attention behavior
Besides accuracy, one major advantages of our model is to use
attention which can be exploited to find discriminative data. More
precisely, we can extract important words and sentences from the
dataset with respect to users preferences.

4.4.1 Word Attention. To extract discriminative words we proceed
as follows: For every test sentences, we extract the word which has
the maximum attention value. We then obtain a set of all of the most
discriminative test words. Those are mainly adjectives such as great,
good or love. More interestingly we can analyze these discriminative
words with respect to both attention terms: aд –general attention–
and au,i –personalized attention– (cf eq. 7).

For the general attention term, discriminative words are mainly
polarized words such as adjectives good, worst, love(fig.3 - left). This
makes sense as those are the word everyone uses to write polarized
reviews. On the contrary, figure 3 (right) shows which words are
considered discriminative only with the personalization. We can
see that adding a custom factor makes the model focus on more
specific words rather than adjectives as with general attention.
Here, these words are obviously video game related. We see that
some specific entities such as Wolfenstein, Lara (Croft), Zelda, Sony,

3We used our own implementation on our splits and cross-validated results as we did
for our model

Figure 3: Word clouds: (left) Discriminative words for the
general part of attention (eq. 7) – (right) Discriminative
words for the personalized attention only (eq. 7)

Blizzard, Capcom are extracted. This type of information is exactly
what we wanted our profile to learn.

Figure 4: Example –from the test set– of explanations drawn
from attention modeling. (Left) a user review and its rat-
ing. (Right) Different outputs of our model: the predicted
rating, useful sentences –drawn from the target item– and
keywords for the user.

4.4.2 Sentence Attention. We can do the same with sentences. For
one item, we build a set of all its sentences from all of its existing
train reviews. Then, we simply use our model in inference with
each test users by replacing their –unknown– review text by all
those sentences. We then obtain an attention score for each of
those train sentences and are easily able to sort them. An example
of extracted sentences is shown (fig.5 - bottom). We can see that
while having the same predicted ratings, extracted sentences can be
different. Typically, user#4 seem to care about the cast of the show
while user#18 seems to care more about the directing and writing.
This illustrates how personalized attention works on sentences.
User have more affinity to sentences which are similar to what they
have previously written. Its worth noting that when visualizing
using PCA (fig.5 - top) the related word attention space, the user
#18 is indeed closer to directing than the user #4 who is closer to
the word "actors".

4.5 Attention as a way to explicit suggestions
Beyond accuracy, being able to explain suggestions is generally
considered as important [26]. Commercial recommender system
are starting to add some sort of explanation mechanism to ease
the black box feeling. Although, those explanations are most of the
time item-centric (i.e this is similar to that) which mainly due to
the abstract nature of learnt profiles.
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ITEM #487==============================
USER #1 - Rating: 1
---------------------------------------
There was simply nothing
redeeming for this show.
I consider it a waste of my time.
I won't knock it for that.
=======================================
USER #18 - Rating: 5
---------------------------------------
Great start !
Great acting, writing and directing.
Really refreshing show,
very unusual writing and comedy.
=======================================
USER #4 - Rating: 5
---------------------------------------
Great start !
The cast is great.
humor is deadpan,
satirical spinon media is fantastic.
Great acting, writing and directing.
=======================================

Figure 5: (top) - PCA view of the word attention space on
item #487, attention vectors are labeled "user_#"
(bottom) - Most discriminant sentences within all existing
train reviews on a single item (#487), for three different
test users on the Amazon Instant Video dataset. Ratings are
those predicted by MLPrec.

Here, our network being text-based, we are able to propose built-
in user-centric explanations, by using our sentiment analysis model
as a filter. As shown previously, our personalized attention focuses
on specific discriminative words and sentences, with respect to a
user tastes and item attributes. By leveraging such capability, we
propose two types of explanations: words and sentences of interest
extraction. An example using a test (user,item) pair is shown in

Figure 4. We argue that extracting personalized discriminative data
from existing reviews is a way to mimic a common user behavior,
scrolling through reviews.

5 CONCLUSION
Our goal was to model users and items using online review datasets.
Mainly, we aimed at adding explanation to the classical recommen-
dation task. Following some recent work on sentiment analysis, we
propose a novel personalized attention mechanism which acts as
a link between two neural networks. We showed that this atten-
tion mechanism, used in an extractive scheme, can bring built-in
explanations.
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